Preview

Proceedings of the National Academy of Sciences of Belarus, Medical series

Advanced search

Biological potential of a genetic engineering construction encoding the gene for the human vascular endothelium growth factor

https://doi.org/10.29235/1814-6023-2024-21-2-95-103

Abstract

The high biological potential of the developed genetically engineered plasmid construct pcDNATM3.1(–) VEGF165 has been established. It has been proven to induce a significant increase in the expression of the gene VEGF165 in mesenchymal multipotent stromal cells and human endothelial cells and to increase the production of the VEGF165 protein by cells. The identified temporary functional activity of the genetically engineered construct in cells and the absence of genotoxic effects minimize the likelihood of oncotransformation.

The created genetically engineered vector construct pcDNATM3.1(–) VEGF165 can be used to develop a gene therapy drug model that promotes angiogenesis in vivo in ischemic tissues.

About the Authors

V. G. Bogdan
Department of Medical Sciences of the National Academy of Sciences of Belarus
Belarus

Vasiliy G. Bogdan – D. Sc. (Med.), Professor, Academician-Secretary

66, Nezavisimosti Ave., 220072, Minsk



А. G. Poleshko
Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus
Belarus

Anna G. Poleshko – Ph. D. (Biol.), Associate Professor, Head of the Laboratory

27, Akademicheskaya Str., 220072, Minsk



А. Yu. Misiukevich
Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus
Belarus

Ala Yu. Misiukevich – Researcher. Institute of Biophysics and Cell Engineering

27, Akademicheskaya Str., 220072, Minsk



А. А. Smirnov
Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus
Belarus

Andrei A. Smirnov – Junior Researcher

27, Akademicheskaya Str., 220072, Minsk



S. V. Sukhaveyeva
Institute of Biophysics and Cell Engineering of the National Academy of Sciences of Belarus
Belarus

Sviatlana V. Sukhaveyeva – Ph. D. (Biol.), Senior Researcher

27, Akademicheskaya Str., 220072, Minsk



А. V. Yantsevich
Institute of Bioorganic Chemistry of the National Academy of Sciences of Belarus
Belarus

Aleksey V. Yantsevich – Ph. D. (Chem.), Associate Professor, Director

5-2, Akademicheskaya Str., 220072, Minsk



References

1. Liu Y., Musetti S., Huang L. Gene therapy with plasmid DNA. Burger’s Medicinal Chemistry and Drug Discovery, 2021, pp. 1–35. https://doi.org/10.1002/0471266949.bmc073.pub3

2. Bogdan V. G., Lepeshko S. G. Stimulation of angiogenesis in treatment of patients with chronic arterial insufficiency of the lower limbs. Voennaya meditsina [Military medicine], 2017, no. 2, pp. 117–119 (in Russian).

3. Chervyakov Yu. V., Vlasenko O. N. Comparison of the effectiveness of gene therapy and standard conservative therapy for patients with chronic lower limb ischemia due to atherosclerosis. Vestnik khirurgii imeni I. I. Grekova [Grekov’s Bulletin of Surgery], 2018, vol. 177, no. 2, pp. 64–69 (in Russian).

4. Rubina K. A., Kalinina N. I., Efimenko A. Yu., Lopatina T. V., Melikhova V. S., Tsokolaeva Z. I., Sysoeva V. Yu., Tkachuk V. A., Parfenova E. V. The mechanism of stimulation of angiogenesis in ischemic myocardium with the help of stromal cells of adipose tissue. Kardiologiya [Cardiology], 2010, vol. 50, no. 2, pp. 51–61 (in Russian).

5. Semenza G. L. Vasculogenesis, angiogenesis, and arteriogenesis: mechanisms of blood vessel formation and remodeling. Journal of Cellular Biochemistry, 2007, vol. 102, no. 4, pp. 840–847. https://doi.org/10.1002/jcb.21523

6. Shih S.-C., Robinson G. S., Perruzzi C. A., Calvo A., Desai K., Green J. E., Ali I. U., Smith L. E. H., Senger D. R. Molecular profiling of angiogenesis markers. American Journal of Pathology, 2002, vol. 161, no. 1, pp. 35–41. https://doi.org/10.1016/S0002-9440(10)64154-5

7. Stepanova O. I., Lesnichiya M. V., L’vova T. Yu., Sokolov D. I., Sel’kov S. A. Angiopoietins placental secretion in normal pregnancies and those complicated by preeclampsia. Zhurnal akusherstva i zhenskikh boleznei [Journal of obstetrics and women’s diseases], 2010, no. 6, pp. 69–74 (in Russian).

8. Vasina L. V., Vlasov T. D., Petrishchev N. N. Functional heterogeneity of the endothelium. Arterial’naya gipertenziya [Arterial hypertension], 2017, vol. 23, no. 2, pp. 88–102 (in Russian).

9. Kishwar H. K. Gene expression in mammalian cells and its applications. Advanced Pharmaceutical Bulletin, 2013, vol. 3, no. 2, pp. 257–263. https://doi.org/10.5681/apb.2013.042

10. Skryabin K. G., El’darov M. A., Kamardinov D. K., Zinov’eva M. V., Ivanov D. S., Prasolov V. S. [et al.]. Differential expression of human vascular endothelial growth factor isoforms and new approaches to therapeutic angiogenesis. Doklady Akademii nauk [Reports of the Academy of Sciences], 2004, vol. 397, no. 6, pp. 838–841 (in Russian).

11. Slobodkina E., Karagyaur M. N., Balaban’yan V. Yu., Makarevich P. I. Gene therapy in regenerative medicine: recent achievements and actual directions of development. Geny i Kletki [Genes and Cells], 2020, vol. 15, no. 1, pp. 6–16 (in Russian).

12. Makarevich P. I. Three decades of gene therapy development: milestones and prospects. Regeneratsiya organov i tkanei [Regeneration of organs and tissues], 2023, vol. 1, no. 1, pp. 16–24 (in Russian).

13. Jain R. K., Au Р., Tam J., Duda D. G., Fukumura D. Engineering vascularized tissue. Nature Biotechnology, 2005, vol. 23, no. 7, pp. 821–823. https://doi.org/10.1038/nbt0705-821

14. Hirschi K. K., D’Amore P. A. Pericytes in the microvasculature. Cardiovascular Research, 1996, vol. 32, no. 4, pp. 687–698.

15. Ravishankar P., Zeballos M. A., Balachandran K. Isolation of endothelial progenitor cells from human umbilical cord blood. Journal of Visualized Experiments, 2017, vol. 127, art. 56021. https://doi.org/10.3791/56021

16. Baudin B., Bruneel A., Bosselut N., Vaubourdolle M. A protocol for isolation and culture of human umbilical vein endothelial cells. Nature Protocols, 2007, vol. 2, no. 3, pp. 481–485. https://doi.org/10.1038/nprot.2007.54

17. Zuk P. A., Zhu M., Ashjian P., de Ugarte D. A., Huang J. I., Mizuno H., Alfonso Z. C., Fraser J. K., Benhaim P., Hedrick M. H. Human adipose tissue is a source of multipotent stem cells. Molecular Biology of the Cell, 2002, vol. 13, no. 12, pp. 4279–4295. https://doi.org/10.1091/mbc.e02-02-0105


Review

For citations:


Bogdan V.G., Poleshko А.G., Misiukevich А.Yu., Smirnov А.А., Sukhaveyeva S.V., Yantsevich А.V. Biological potential of a genetic engineering construction encoding the gene for the human vascular endothelium growth factor. Proceedings of the National Academy of Sciences of Belarus, Medical series. 2024;21(2):95-103. (In Russ.) https://doi.org/10.29235/1814-6023-2024-21-2-95-103

Views: 221


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-6023 (Print)
ISSN 2524-2350 (Online)