Assessing the collagen metabolism in experimental BCG-induced tuberculous inflammation
https://doi.org/10.29235/1814-6023-2024-21-1-62-67
Abstract
The paper presents the study results of the organs of mice without (control group) and with BCG-induced granulomatosis. The contents of hydroxyproline (Hyp) fractions (free, peptide-bound, and protein-bound) were measured in the liver, lungs, and spleen by our alkaline hydrolysis method. In mice with BCG-induced granulomatosis, an increased content of Hyp fractions, reflecting the collagen synthesis, was observed, while the content of free Hyp, characterizing the collagen degradation, did not differ from similar indicators of the control group. The analysis of the ratios of individual Hyp fractions showed a different fibrosis degree in the organs. It was high in the lungs, moderate in the liver and weak in the spleen, thus indicating the organ-specific fibrogenesis in tuberculous infection.
About the Authors
A. N. PutyatinaRussian Federation
Anna N. Putyatina – Ph. D. (Med.), Researcher
2, Timakov Str., 630117, Novosibirsk
L. B. Kim
Russian Federation
Lena B. Kim – D. Sc. (Med.), Chief Researcher, Head of the group
2, Timakov Str., 630117, Novosibirsk
G. S. Russkikh
Russian Federation
Galina S. Russkikh – Ph. D. (Biol.), Senior Researcher
2, Timakov Str., 630117, Novosibirsk
References
1. Gabr S. A., Alghadir A. H., Sherif Y. E., Ghfar A. A. Hydroxyproline as a biomarker in liver disease. Biomarkers in liver disease. Biomarkers in disease: methods, discoveries and applications. Dordrecht, 2016, pp. 471–491. https://doi.org/10.1007/978-94-007-7742-2_26-1
2. Sorushanova A., Delgado L. M., Wu Z., Shologu N., Kshirsagar A., Raghunath R. [et al.]. The collagen suprafamily: from biosynthesis to advanced biomaterial development. Advanced Materials, 2019, vol. 31, no. 1, p. e1801651. https://doi.org/10.1002/adma.201801651
3. Tush E. V., Eliseeva Т. I., Khaletskaya О. V., Krasilnikova S. V., Ovsyannikov D. Yu., Potemina T. E., Ignatov S. K. Extracellular matrix markers and methods for their study (review). CTM, 2019, vol. 11, no. 2, pp. 133–147. https://doi.org/10.17691/stm2019.11.2.20
4. Siddiqi N. J. Effect of sodium fluoride and magnesium chloride on different hydroxyproline fractions in rat liver. Journal of Biochemistry and Biophysics, 2012, vol. 49, no. 2, pp. 130–133.
5. Qiu B., Wei F., Sun X., Wang X., Duan B., Shi C., Zhang J., Zhang J., Qiu W., Mu W. Measurement of hydroxyproline in collagen with three different methods. Molecular Medicine Reports, 2014, vol. 10, no. 2, pp. 1157–1163. https://doi.org/10.3892/mmr.2014.2267
6. da Silva C. M. L., Spinelli E., Rodrigues S. V. Fast and sensitive collagen quantification by alkaline hydrolysis/ hydroxyproline assay. Food Chemistry, 2015, vol. 173, pp. 619–623. https://doi.org/10.1016/j.foodchem.2014.10.073
7. Athanasiou K. A., Darling E. M., Hu J. C., Reddi A. H. Assaying for total collagen content. Articular cartilage. 2nd ed. Boca Raton, 2017, pp. 585–587.
8. Shevchenko O. S., Todoriko L. D., Ovcharenko I. A., Radzishevska Ye. B., Shvets O. M., Ovcharenko S. S., Semianiv I. O., Vivsyannuk V. V. Dynamics of aldosterone, connective tissue reorganization and glucose level as markers for tuberculosis treatment effectiveness. Archives of the Balkan Medical Union, 2019, vol. 54, no. 2, pp. 274–280. https://doi.org/10.31688/ABMU.2019.54.2.08
9. Putyatina A. N., Russkikh G. S., Kim L. B. Method of determining fractions of hydroxyproline in biological material. Patent no. 2735375 (30.10.2020). Izobreteniya. Poleznye modeli: ofitsial’nyi byulleten’ [Inventions. Utility models: official bulletin], 2020, no. 31 (in Russian).
10. Kim L. B., Putyatina A. N., Russkikh G. S., Shkurupy V. A. Content of the major extracellular matrix components of the liver and lung in mice with chronic BCG-granulomatosis treated with liposome-encapsulated dextrazide. Bulletin of Experimental Biology and Medicine, 2021, vol. 170, no. 4, pp. 453–457. https://doi.org/10.1007/s10517-021-05086-7
11. Shkurupiy V. A., Kim L. B., Potapova O. V., Cherdantseva L. A., Putyatina A. N., Nikonova I. K. Fibrogenesis in granulomas and lung interstitium in tuberculous inflammation in mice. Bulletin of Experimental Biology and Medicine, 2014, vol. 156, no. 6, pp. 731–735. https://doi.org/10.1007/s10517-014-2435-y
12. Jayasankar K., Ramanathan V. D. Biochemical and histochemical changes relating to fibrosis following infection with Mycobacterium tuberculosis in the guinea pig. Indian Journal of Medical Research, 1999, vol. 110, pp. 91–97.
13. Chai Q., Lu Z., Liu Z., Zhong Y., Zhang F., Qiu C., Li B., Wang J., Zhang L., Pang Y., Liu C. H. Lung gene expression signatures suggest pathogenic links and molecular markers for pulmonary tuberculosis, adenocarcinoma and sarcoidosis. Communications Biology, 2020, vol. 3, no. 1, p. 604. https://doi.org/10.1038/s42003-020-01318-0
14. Tarasova L. G., Strel’tsova E. N. Features of collagen exchange as compared to immunological status of patients with pulmonary tuberculosis. Astrahanskii meditsinskii zhurnal [Astrakhan medical journal], 2016, vol. 11, no. 4, pp. 100–105 (in Russian).
15. Kozhin P. M., Chechushkov A. V., Zaitseva N. S., Khrapova M. V., Cherdantseva L. A., Men’shchikova E. B., Troitskii A. V., Shkurupii V. A. Expression of protein genes participating in fibroplastic processes in mice lung during the development of tuberculous inflammation. Sibirskii nauchnyi meditsinskii zhurnal [Siberian scientific medical journal], 2019, vol. 39, no. 4, pp. 22–29 (in Russian).
Review
For citations:
Putyatina A.N., Kim L.B., Russkikh G.S. Assessing the collagen metabolism in experimental BCG-induced tuberculous inflammation. Proceedings of the National Academy of Sciences of Belarus, Medical series. 2024;21(1):62-67. (In Russ.) https://doi.org/10.29235/1814-6023-2024-21-1-62-67