1. Tryptophan biochemistry: structural, nutritional, metabolic, and medical aspects in humans / L. Palego [et al.] // J. Amino Acids. - 2016. - Vol. 2016. - Art. 8952520. https://doi.org/10.1155/2016/8952520
2. Zinc and its importance for human health: An integrative review / N. Roohani [et al.] // J. Res. Med. Sci. - 2013. - Vol. 18, N 2. - P. 144‒157.
3. Makita, S. Post-transcriptional regulation of immune responses and inflammatory diseases by RNA-binding ZFP36 family proteins / S. Makita, H. Takatori, H. Nakajima // Front Immunol. - 2021. - Vol. 12. - Art. 711633. https://doi.org/10.3389/fimmu.2021.711633
4. Tryptophan supplementation enhances intestinal health by improving gut barrier function, alleviating inflammation, and modulating intestinal microbiome in lipopolysaccharide-challenged piglets / G. Liu [et al.] // Front Microbiol. - 2022. - Vol. 13. - Art. 919431. https://doi.org/10.3389/fmicb.2022.919431
5. Effect of tryptophan and kynurenine on cell proliferation in tissue culture of the cerebral cortex in young and old rats / N. I. Chalisova [et al.] // Adv. Gerontol. - 2019. - Vol. 9. - P. 186-189. https://doi.org/10.1134/S2079057019020073
6. Tryptophan-derived catabolites are responsible for inhibition of T and natural killer cell proliferation induced by indoleamine 2,3-dioxygenase / G. Frumento [et al.] // J. Exp. Med. - 2002. - Vol. 196, N 4. - P. 459‒468. https://doi.org/10.1084/jem.20020121
7. The effect of IV L-tryptophan on prolactin, growth hormone, and mood in healthy subjects / D. S. Charney [et al.] // Psychopharmacology (Berl). - 1982. - Vol. 78, N 1. - P. 38‒43. https://doi.org/10.1007/BF00470585
8. Cunningham, B. C. Dimerization of human growth hormone by zinc / B. C. Cunningham, M. G. Mulkerrin, J. A. Wells // Science. - 1991. - Vol. 253, N 5019. - P. 545‒548. https://doi.org/10.1126/science.1907025
9. Oxenkrug, G. Insulin resistance and dysregulation of tryptophan-kynurenine and kynurenine-nicotinamide adenine dinucleotide metabolic pathways / G. Oxenkrug // Mol. Neurobiol. - 2013. - Vol. 48, N 2. - P. 294‒301. https://doi.org/10.1007/ s12035-013-8497-4
10. The effect of zinc supplementation in pre-diabetes: A protocol for systematic review and meta-analysis / X. Du [et al.] // Medicine (Baltimore). - 2019. - Vol. 98, N 27. - P. e16259. https://doi.org/10.1097/MD.0000000000016259
11. Tryptophan metabolism, inflammation, and oxidative stress in patients with neurovascular disease / M. Hajsl [et al.] // Metabolites. - 2020. - Vol. 10, N 5. - Art. 208. https://doi.org/10.3390/metabo10050208
12. Melatonin as an antioxidant: under promises but over delivers / R. J. Reiter [et al.] // J. Pineal Res. - 2016. - Vol. 61, N 3. - P. 253‒278. https://doi.org/10.1111/jpi.12360
13. Slepchenko, K. G. Cross talk between increased intracellular zinc (Zn2+) and accumulation of reactive oxygen species in chemical ischemia / K. G. Slepchenko, Q. Lu, Y. V. Li // Am. J. Physiol. Cell Physiol. - 2017. - Vol. 313, N 4. - P. C448‒C459. https://doi.org/10.1152/ajpcell.00048.2017
14. Hübner, C. Interactions of zinc- and redox-signaling pathways / C. Hübner, H. Haase // Redox Biol. - 2021. - Vol. 41. - Art. 101916. https://doi.org/10.1016/j.redox.2021.101916
15. Muthuraman, P. Analysis of dose-dependent effect of zinc oxide nanoparticles on the oxidative stress and antioxidant enzyme activity in adipocytes / P. Muthuraman, K. Ramkumar, D. H. Kim // Appl. Biochem. Biotechnol. - 2014. - Vol. 174, N 8. - P. 2851‒2863. https://doi.org/10.1007/s12010-014-1231-5
16. Tryptophan administration in rats enhances phagocytic function and reduces oxidative metabolism / S. Sanchez [et al.] // Neuro Endocrinol. Lett. - 2008. - Vol. 29, N 6. - P. 1026‒1032.
17. León-Ponte, M. Serotonin provides an accessory signal to enhance T-cell activation by signaling through the 5-HT7 receptor / M. León-Ponte, G. P. Ahern, P. J. O’Connell // Blood. - 2007. - Vol. 109, N 8. - P. 3139‒3146. https://doi.org/10.1182/blood-2006-10-052787
18. Wessels, I. Zinc as a gatekeeper of immune function / I. Wessels, M. Maywald, L. Rink // Nutrients. - 2017. - Vol. 9, N 12. - Art. 1286. https://doi.org/10.3390/nu9121286
19. Lindseth, G. The effects of dietary tryptophan on affective disorders / G. Lindseth, B. Helland, J. Caspers // Arch. Psychiatr. Nurs. - 2015. - Vol. 29, N 2. - P. 102‒107. https://doi.org/10.1016/j.apnu.2014.11.008
20. Zinc is involved in depression by modulating G protein-coupled receptor heterodimerization / M. Tena-Campos [et al.] // Mol. Neurobiol. - 2016. - Vol. 53, N 3. - P. 2003‒2015. https://doi.org/10.1007/s12035-015-9153-y
21. Kynurenine is an endothelium-derived relaxing factor produced during inflammation / Y. Wang [et al.] // Nat. Med. - 2010. - Vol. 16, N 3. - P. 279‒285. https://doi.org/10.1038/nm.2092
22. Zinc regulates iNOS-derived nitric oxide formation in endothelial cells / M. M. Cortese-Krott [et al.] // Redox Biol. - 2014. - Vol. 16, N 2. - P. 945‒954. https://doi.org/10.1016/j.redox.2014.06.011
23. Gut microbiota-produced tryptamine activates an epithelial g-protein-coupled receptor to increase colonic secretion / Y. Bhattarai [et al.] // Cell Host Microbe. - 2018. - Vol. 23, N 6. - P. 775‒785.e5. https://doi.org/10.1016/j.chom.2018.05.004
24. Effect of zinc treatment on intestinal motility in experimentally induced diarrhea in rats / O. S. Adeniyi [et al.] // Niger J. Physiol. Sci. - 2014. - Vol. 29, N 1. - P. 11‒15.
25. Выбор дозы препарата для доклинического исследования: межвидовой перенос доз / Е. В. Шекунова [и др.] // Ведомости Науч. центра экспертизы средств мед. применения. Регулятор. исслед. и экспертиза лекарств. средств. - 2020. - Т. 10, № 1. - С. 19-28.
26. Neinast, M. Branched chain amino acids / M. Neinast, D. Murashige, Z. Arany // Annu. Rev. Physiol. - 2019. - Vol. 81. - P. 139‒164. https://doi.org/10.1146/annurev-physiol-020518-114455
27. Holeček, M. Branched-chain amino acids in health and disease: metabolism, alterations in blood plasma, and as supplements / M. Holeček // Nutr. Metab. - 2018. - Vol. 15. - Art. 33. https://doi.org/10.1186/s12986-018-0271-1