Preview

Proceedings of the National Academy of Sciences of Belarus, Medical series

Advanced search

Impact of azithromycin on the migration of peripheral blood T lymphocytes from patients with chronic obstructive pulmonary disease to RANTES and IP-10

https://doi.org/10.29235/1814-6023-2023-20-3-191-204

Abstract

The inflammatory process specific for chronic obstructive pulmonary disease (COPD) is accompanied by T lymphocyte migration from peripheral blood to the respiratory tract. Suppression of T cell chemotaxis by drugs may attenuate the inflammatory response in patients with COPD.

The aim of this study was to determine the ability of azithromycin in combination with glucocorticoids to affect the migration of blood T cells in patients with COPD.

The percentage of T lymphocytes expressing chemokine receptors CCR5, CCR6, CCR7, CXCR3, CXCR4, CXCR6 was analyzed by flow cytometry in the peripheral blood of 54 smokers with COPD, 21 healthy smokers, and 20 healthy non-smokers, as well as in bronchoalveolar lavage (BAL) of 7 smokers with COPD and 7 healthy smokers. Additionally, we determined the effect of azithromycin (10 μg/ml) and budesonide (10 nM) on the migration of peripheral blood T helper cells and cytotoxic T lymphocytes from patients with COPD (n = 8) to chemokines RANTES (10 nM) and IP-10 (10 nM).

The percentage of T lymphocytes expressing chemokine receptors CXCR3 and CCR5 increased in the peripheral blood of COPD smokers compared with healthy smokers and healthy non-smokers, as well as in the BAL of COPD smokers compared with healthy smokers. The proportion of T cells expressing chemokine receptors CXCR4, CXCR6, CCR6, and CCR7 did not differ in the peripheral blood and the BAL between COPD patients and healthy controls. Budesonide only inhibited the migration of cytotoxic T lymphocytes to RANTES. Azithromycin, alone and combined with budesonide, inhibited the migration of T helper cells and cytotoxic T lymphocytes to both RANTES and IP-10. Moreover, the inhibitory effect of azithromycin, in combination with budesonide and without it, on the T cell migration was significantly greater than the effect of budesonide alone.

Our results suggest a role for CXCR3 and CCR5 in T cell recruitment into the lungs of COPD patients and demonstrate the ability of azithromycin to inhibit T lymphocyte migration.

About the Authors

A. G. Kadushkin
Belarusian State Medical University
Belarus

Aliaksei G. Kadushkin – Ph. D. (Med.), Associate Professor, Belarusian State Medical University.

83, Dzerzhinski Ave., 220083, Minsk



A. D. Tahanovich
Belarusian State Medical University
Belarus

Anatoli D. Tahanovich – D. Sc. (Med.), Professor, Head of the Department, Belarusian State Medical University.

83, Dzerzhinski Ave., 220083, Minsk



L. V. Movchan
Republican Scientific and Practical Center for Pediatric Oncology, Hematology and Immunology
Belarus

Lyudmila V. Movchan – Ph. D. (Biol.), Doctor of Laboratory Diagnostics, Republican Scientific and Practical Center for Pediatric Oncology, Hematology and Immunology.

43, Frunzenskaya Str., 223053, Borovliany, Minsk region



M. M. Zafranskaya
International Sakharov Environmental Institute of Belarusian State University
Belarus

Marina M. Zafranskaya – D. Sc. (Med.), Associate Professor, Head of the Department, International Sakharov Environmental Institute of Belarusian State University.

23/1, Dolgobrodskaya Str., 220070, Minsk



T. V. Shman
Republican Scientific and Practical Center for Pediatric Oncology, Hematology and Immunology
Belarus

Tatsiana V. Shman – Ph. D. (Biol.), Head of the Laboratory, Republican Scientific and Practical Center for Pediatric Oncology, Hematology and Immunology.

43, Frunzenskaya Str., 223053, Borovliany, Minsk region



References

1. Adeloye D., Song P., Zhu Y., Campbell H., Sheikh A., Rudan I. Global Respiratory Health Unit. Global, regional, and national prevalence of, and risk factors for, chronic obstructive pulmonary disease (COPD) in 2019: a systematic review and modelling analysis. Lancet. Respiratory Medicine, 2022, vol. 10, no. 5, pp. 447–458. https://doi.org/10.1016/S2213-2600(21)00511-7

2. Diab N., Gershon A. S., Sin D. D., Tan W. C., Bourbeau J., Boulet L. P., Aaron S. D. Underdiagnosis and overdiagnosis of chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine, 2018, vol. 198, no. 9, pp. 1130–1139. https://doi.org/10.1164/rccm.201804-0621CI

3. Brusselle G. G., Joos G. F., Bracke K. R. New insights into the immunology of chronic obstructive pulmonary disease. Lancet, 2011, vol. 378, no. 9795, pp. 1015–1026. https://doi.org/10.1016/S0140-6736(11)60988-4

4. Chrysofakis G., Tzanakis N., Kyriakoy D., Tsoumakidou M., Tsiligianni I., Klimathianaki M., Siafakas N. M. Perforin expression and cytotoxic activity of sputum CD8+ lymphocytes in patients with COPD. Chest, 2004, vol. 125, no. 1, pp. 71–76. https://doi.org/10.1378/chest.125.1.71

5. Di Stefano A., Caramori G., Oates T., Capelli A., Lusuardi M., Gnemmi I. [et al.]. Increased expression of nuclear factor-kappaB in bronchial biopsies from smokers and patients with COPD. European Respiratory Journal, 2002, vol. 20, no. 3, pp. 556–563. https://doi.org/10.1183/09031936.02.00272002

6. Cosio M. G. Autoimmunity, T-cells and STAT-4 in the pathogenesis of chronic obstructive pulmonary disease. European Respiratory Journal, 2004, vol. 24, pp. 3–5. https://doi.org/10.1183/09031936.04.00043104

7. Di Stefano A., Caramori G., Capelli A., Gnemmi I., Ricciardolo F. L., Oates T., Donner C. F., Chung K. F., Barnes P. J., Adcock I. M. STAT4 activation in smokers and patients with chronic obstructive pulmonary disease. European Respiratory Journal, 2004, vol. 24, pp. 78–85. https://doi.org/10.1183/09031936.04.00080303

8. Williams M., Todd I., Fairclough L. C. The role of CD8+ T lymphocytes in chronic obstructive pulmonary disease: a systematic review. Inflammation Research, 2021, vol. 70, no. 1, pp. 11–18. https://doi.org/10.1007/s00011-020-01408-z

9. Lethbridge M. W., Kemeny D. M., Ratoff J. C., O’Connor B. J., Hawrylowicz C. M., Corrigan C. J. A novel technique to explore the functions of bronchial mucosal T cells in chronic obstructive pulmonary disease: application to cytotoxicity and cytokine immunoreactivity. Clinical and Experimental Immunology, 2010, vol. 161, no. 3, pp. 560–569. https://doi.org/10.1111/j.1365-2249.2010.04198.x

10. Henrot P., Prevel R., Berger P., Dupin I. Chemokines in COPD: From implication to therapeutic use. International Journal of Molecular Sciences, 2019, vol. 20, no. 11, art. 2785. https://doi.org/10.3390/ijms20112785

11. Tomankova T., Kriegova E., Liu M. Chemokine receptors and their therapeutic opportunities in diseased lung: far beyond leukocyte trafficking. American Journal of Physiology-Lung Cellular and Molecular Physiology, 2015, vol. 308, no. 7, pp. L603–L618. https://doi.org/10.1152/ajplung.00203.2014

12. Koch A., Gaczkowski M., Sturton G., Staib P., Schinköthe T., Klein E., Rubbert A., Bacon K., Wassermann K., Erdmann E. Modification of surface antigens in blood CD8+ T-lymphocytes in COPD: effects of smoking. European Respiratory Journal, 2007, vol. 29, no. 1, pp. 42–50. https://doi.org/10.1183/09031936.00133205

13. Costa C., Traves S. L., Tudhope S. J., Fenwick P. S., Belchamber K. B., Russell R. E., Barnes P. J., Donnelly L. E. Enhanced monocyte migration to CXCR3 and CCR5 chemokines in COPD. European Respiratory Journal, 2016, vol. 47, no. 4, pp. 1093–1102. https://doi.org/10.1183/13993003.01642-2015

14. Leckie M. J., Jenkins G. R., Khan J., Smith S. J., Walker C., Barnes P. J., Hansel T. T. Sputum T lymphocytes in asthma, COPD and healthy subjects have the phenotype of activated intraepithelial T cells (CD69+ CD103+). Thorax, 2003, vol. 58, no. 1, pp. 23–29. https://doi.org/10.1136/thorax.58.1.23

15. Hughes C. E., Nibbs R. J. B. A guide to chemokines and their receptors. FEBS Journal, 2018, vol. 285, no. 16, pp. 2944–2971. https://doi.org/10.1111/febs.14466

16. Guo P., Li R., Piao T. H., Wang C. L., Wu X. L., Cai H. Y. Pathological mechanism and targeted drugs of COPD. International Journal of Chronic Obstructive Pulmonary Disease, 2022, vol. 17, pp. 1565–1575. https://doi.org/10.2147/COPD.S366126

17. Agusti A., Fabbri L. M., Singh D., Vestbo J., Celli B., Franssen F. M. E., Rabe K. F., Papi A. Inhaled corticosteroids in COPD: friend or foe? European Respiratory Journal, 2018, vol. 52, no. 6, art. 1801219. https://doi.org/10.1183/13993003.01219-2018

18. Gupta P., O’Mahony M. S. Potential adverse effects of bronchodilators in the treatment of airways obstruction in older people: recommendations for prescribing. Drugs and Aging, 2008, vol. 25, no. 5, pp. 415–443. https://doi.org/10.2165/00002512-200825050-00005

19. Tanabe N., Sato S., Muro S., Shima H., Oguma T., Tanimura K., Sato A., Hirai T. Regional lung deflation with increased airway volume underlies the functional response to bronchodilators in chronic obstructive pulmonary disease. Physiological Reports, 2019, vol. 7, no. 24, art. e14330. https://doi.org/10.14814/phy2.14330

20. Leung J. M., Sin D. D. Inhaled corticosteroids in COPD: the final verdict is…. European Respiratory Journal, 2018, vol. 52, no. 6, art. 1801940. https://doi.org/10.1183/13993003.01940-2018

21. Kadushkin A. G., Tahanovich A. D., Movchan L. V., Kolesnikova T. S., Khadasouskaya A. V., Shman T. V. The effect of glucocorticoids in combination with azithromycin or theophylline on cytokine production by NK and NKT-like blood cells of patients with chronic obstructive pulmonary disease. Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry, 2021, vol. 15, pp. 337–344. https://doi.org/10.1134/S1990750821040053

22. Kadushkin A., Tahanovich A., Movchan L., Talabayeva E., Plastinina A., Shman T. Azithromycin modulates release of steroid-insensitive cytokines from peripheral blood mononuclear cells of patients with chronic obstructive pulmonary disease. Advances in Respiratory Medicine, 2022, vol. 90, no. 1, pp. 17–27. https://doi.org/10.5603/ARM.a2022.0002

23. Reijnders T. D. Y., Saris A., Schultz M. J., van der Poll T. Immunomodulation by macrolides: therapeutic potential for critical care. Lancet. Respiratory Medicine, 2020, vol. 8, no. 6, pp. 619–630. https://doi.org/10.1016/S2213-2600(20)30080-1

24. Kobayashi Y., Wada H., Rossios C., Takagi D., Charron C., Barnes P. J., Ito K. A novel macrolide/fluoroketolide, solithromycin (CEM-101), reverses corticosteroid insensitivity via phosphoinositide 3-kinase pathway inhibition. British Journal of Pharmacology, 2013, vol. 169, no. 5, pp. 1024–1034. https://doi.org/10.1111/bph.12187

25. Kadushkin A. G., Tahanovich A. D., Movchan L. V., Zafranskaya M. M., Dziadzichkina V. V., Shman T. V. Population rearrangement of B-lymphocytes expressing chemokine receptors in patients with chronic obstructive pulmonary disease. Biochemistry (Moscow), Supplement Series B: Biomedical Chemistry, 2022, vol. 16, pp. 216–224 (in Russian). https://doi.org/10.1134/S1990750822030064

26. Kadushkin A. G., Shman T. V., Belevtsev M. V., Ibragimova Z. A., Taganovich A. D. Changes in T-lymphocyte population containing chemokine receptors in patients with chronic obstructive pulmonary disease. Pulmonologiya = Pulmonologiya, 2013, vol. 2, pp. 41–45 (in Russian).

27. Yung R., Mo R., Grolleau-Julius A., Hoeltzel M. The effect of aging and caloric restriction on murine CD8+ T cell chemokine receptor gene expression. Immunity and Ageing, 2007, vol. 4, art. 8. https://doi.org/10.1186/1742-4933-4-8

28. Mo R., Chen J., Han Y., Bueno-Cannizares C., Misek D. E., Lescure P. A., Hanash S., Yung R. L. T cell chemokine receptor expression in aging. Journal of Immunology, 2003, vol. 170, no. 2, pp. 895–904. https://doi.org/10.4049/jimmunol.170.2.895

29. Urbanowicz R. A., Lamb J. R., Todd I., Corne J. M., Fairclough L. C. Enhanced effector function of cytotoxic cells in the induced sputum of COPD patients. Respiratory Research, 2010, vol. 11, no. 1, art. 76. https://doi.org/10.1186/1465-9921-11-76

30. Smyth L. J., Starkey C., Gordon F. S., Vestbo J., Singh D. CD8 chemokine receptors in chronic obstructive pulmonary disease. ClinicalandExperimentalImmunology,2008,vol.154,no.1,pp.56–63.https://doi.org/10.1111/j.1365-2249.2008.03729.x

31. Yawn B. P., Mintz M. L., Doherty D. E. GOLD in practice: Chronic obstructive pulmonary disease treatment and management in the primary care setting. International Journal of Chronic Obstructive Pulmonary Disease, 2021, vol. 16, pp. 289–299. https://doi.org/10.2147/COPD.S222664

32. Saetta M., Mariani M., Panina-Bordignon P., Turato G., Buonsanti C., Baraldo S. [et al.]. Increased expression of the chemokine receptor CXCR3 and its ligand CXCL10 in peripheral airways of smokers with chronic obstructive pulmonary disease. American Journal of Respiratory and Critical Care Medicine, 2002, vol. 165, no. 10, pp. 1404–1409. https://doi.org/10.1164/rccm.2107139

33. Di Stefano A., Caramori G., Gnemmi I., Contoli M., Bristot L., Capelli A. [et al.]. Association of increased CCL5 and CXCL7 chemokine expression with neutrophil activation in severe stable COPD. Thorax, 2009, vol. 64, no. 11, pp. 968–975. https://doi.org/10.1136/thx.2009.113647

34. Lakshmi S. P., Reddy A. T., Reddy R. C. Emerging pharmaceutical therapies for COPD. International Journal of Chronic Obstructive Pulmonary Disease, 2017, vol. 12, pp. 2141–2156. https://doi.org/10.2147/COPD.S121416

35. Kaur M., Smyth L. J., Cadden P., Grundy S., Ray D., Plumb J., Singh D. T lymphocyte insensitivity to corticosteroids in chronic obstructive pulmonary disease. Respiratory Research, 2012, vol. 13, no. 1, art. 20. https://doi.org/10.1186/1465-9921-13-20

36. Hodge G., Hodge S. Steroid Resistant CD8+CD28null NKT-like pro-inflammatory cytotoxic cells in chronic obstructive pulmonary disease. Frontiers in Immunology, 2016, vol. 7, art. 617. https://doi.org/10.3389/fimmu.2016.00617

37. Kadushkin A. G., Taganovich A. D. Molecular mechanisms of corticosteroid resistance in patients with chronic obstructive pulmonary disease. Pulmonologiya = Pulmonologiya, 2016, vol. 26, no. 6, pp. 736–747 (in Russian).

38. Uzun S., Djamin R. S., Kluytmans J. A., Mulder P. G., van’t Veer N. E., Ermens A. A., Pelle A. J., Hoogsteden H. C., Aerts J. G., van der Eerden M. M. Azithromycin maintenance treatment in patients with frequent exacerbations of chronic obstructive pulmonary disease (COLUMBUS): a randomised, double-blind, placebo-controlled trial. Lancet. Respiratory Medicine, 2014, vol. 2, no. 5, pp. 361–368. https://doi.org/10.1016/S2213-2600(14)70019-0

39. Albert R. K., Connett J., Bailey W. C., Casaburi R., Cooper J. A. Jr, Criner G. J. [et al.]. COPD Clinical Research Network. Azithromycin for prevention of exacerbations of COPD. New England Journal of Medicine, 2011, vol. 365, no. 8, pp. 689–698. https://doi.org/10.1056/NEJMoa1104623


Review

For citations:


Kadushkin A.G., Tahanovich A.D., Movchan L.V., Zafranskaya M.M., Shman T.V. Impact of azithromycin on the migration of peripheral blood T lymphocytes from patients with chronic obstructive pulmonary disease to RANTES and IP-10. Proceedings of the National Academy of Sciences of Belarus, Medical series. 2023;20(3):191-204. (In Russ.) https://doi.org/10.29235/1814-6023-2023-20-3-191-204

Views: 284


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-6023 (Print)
ISSN 2524-2350 (Online)