1. Global, regional, and national prevalence of, and risk factors for, chronic obstructive pulmonary disease (COPD) in 2019: a systematic review and modelling analysis / D. Adeloye [et al.] // Lancet. Respir. Med. - 2022. - Vol. 10, N 5. - P. 447-458. https://doi.org/10.1016/S2213-2600(21)00511-7
2. Underdiagnosis and overdiagnosis of chronic obstructive pulmonary disease / N. Diab [et al.] // Am. J. Respir. Crit. Care Med. - 2018. - Vol. 198, N 9. - P. 1130-1139. https://doi.org/10.1164/rccm.201804-0621CI
3. Brusselle, G. G. New insights into the immunology of chronic obstructive pulmonary disease / G. G. Brusselle, G. F. Joos, K. R. Bracke // Lancet. - 2011. - Vol. 378, N 9795. - P. 1015-1026. https://doi.org/10.1016/S0140-6736(11)60988-4
4. Perforin expression and cytotoxic activity of sputum CD8+ lymphocytes in patients with COPD / G. Chrysofakis [et al.] // Chest. - 2004. - Vol. 125, N 1. - P. 71-76. https://doi.org/10.1378/chest.125.1.71
5. Increased expression of nuclear factor-kappaB in bronchial biopsies from smokers and patients with COPD / A. Di Stefano [et al.] // Eur. Respir. J. - 2002. - Vol. 20, N 3. - P. 556-563. https://doi.org/10.1183/09031936.02.00272002
6. Cosio, M. G. Autoimmunity, T-cells and STAT-4 in the pathogenesis of chronic obstructive pulmonary disease / M. G. Cosio // Eur. Respir. J. - 2004. - Vol. 24. - P. 3-5. https://doi.org/10.1183/09031936.04.00043104
7. STAT4 activation in smokers and patients with chronic obstructive pulmonary disease / A. Di Stefano [et al.] // Eur. Respir. J. - 2004. - Vol. 24. - P. 78-85. https://doi.org/10.1183/09031936.04.00080303
8. Williams, M. The role of CD8 + T lymphocytes in chronic obstructive pulmonary disease: a systematic review / M. Williams, I. Todd, L. C. Fairclough // Inflamm. Res. - 2021. - Vol. 70, N 1. - P. 11-18. https://doi.org/10.1007/s00011-020-01408-z
9. A novel technique to explore the functions of bronchial mucosal T cells in chronic obstructive pulmonary disease: application to cytotoxicity and cytokine immunoreactivity / M. W. Lethbridge [et al.] // Clin. Exp. Immunol. - 2010. - Vol. 161, N 3. - P. 560-569. https://doi.org/10.1111/j.1365-2249.2010.04198.x
10. Chemokines in COPD: From implication to therapeutic use / P. Henrot [et al.] // Int. J. Mol. Sci. - 2019. - Vol. 20, N 11. - Art. 2785. https://doi.org/10.3390/ijms20112785
11. Tomankova, T. Chemokine receptors and their therapeutic opportunities in diseased lung: far beyond leukocyte trafficking / T. Tomankova, E. Kriegova, M. Liu // Am. J. Physiol. Lung Cell Mol. Physiol. - 2015. - Vol. 308, N 7. - P. L603- L618. https://doi.org/10.1152/ajplung.00203.2014
12. Modification of surface antigens in blood CD8+ T-lymphocytes in COPD: effects of smoking / A. Koch [et al.] // Eur. Respir J. - 2007. - Vol. 29, N 1. - P. 42-50. https://doi.org/10.1183/09031936.00133205
13. Enhanced monocyte migration to CXCR3 and CCR5 chemokines in COPD / C. Costa [et al.] // Eur. Respir J. - 2016. - Vol. 47, N 4. - P. 1093-1102. https://doi.org/10.1183/13993003.01642-2015
14. Sputum T lymphocytes in asthma, COPD and healthy subjects have the phenotype of activated intraepithelial T cells (CD69+ CD103+) / M. J. Leckie [et al.] // Thorax. - 2003. - Vol. 58, N 1. - P. 23-29. https://doi.org/10.1136/thorax.58.1.23
15. Hughes, C. E. A guide to chemokines and their receptors / C. E. Hughes, R. J. B. Nibbs // FEBS J. - 2018. - Vol. 285, N 16. - P. 2944-2971. https://doi.org/10.1111/febs.14466
16. Pathological mechanism and targeted drugs of COPD / P. Guo [et al.] // Int. J. Chron. Obstruct. Pulmon. Dis. - 2022. - Vol. 17. - P. 1565-1575. https://doi.org/10.2147/COPD.S366126
17. Inhaled corticosteroids in COPD: friend or foe? / A. Agusti [et al.] // Eur. Respir. J. - 2018. - Vol. 52, N 6. - Art. 1801219. https://doi.org/10.1183/13993003.01219-2018
18. Gupta, P. Potential adverse effects of bronchodilators in the treatment of airways obstruction in older people: recommendations for prescribing / P. Gupta, M. S. O’Mahony // Drugs Aging. - 2008. - Vol. 25, N 5. - P. 415-443. https://doi.org/10.2165/00002512-200825050-00005
19. Regional lung deflation with increased airway volume underlies the functional response to bronchodilators in chronic obstructive pulmonary disease / N. Tanabe [et al.] // Physiol. Rep. - 2019. - Vol. 7, N 24. - Art. e14330. https://doi.org/10.14814/phy2.14330
20. Leung, J. M. Inhaled corticosteroids in COPD: the final verdict is…. / J. M. Leung, D. D. Sin // Eur. Respir. J. - 2018. - Vol. 52, N 6. - Art. 1801940. https://doi.org/10.1183/13993003.01940-2018
21. The effect of glucocorticoids in combination with azithromycin or theophylline on cytokine production by NK and NKT-like blood cells of patients with chronic obstructive pulmonary disease / A. G. Kadushkin [et al.] // Biochem. Moscow Suppl. Ser. B. - 2021. - Vol. 15, N 4. - P. 337-344. https://doi.org/10.1134/S1990750821040053
22. Azithromycin modulates release of steroid-insensitive cytokines from peripheral blood mononuclear cells of patients with chronic obstructive pulmonary disease / A. Kadushkin [et al.] // Adv. Respir. Med. - 2022. - Vol. 90, N 1. - P. 17-27. https://doi.org/10.5603/ARM.a2022.0002
23. Immunomodulation by macrolides: therapeutic potential for critical care / T. D. Y. Reijnders [et al.] // Lancet Respir. Med. - 2020. - Vol. 8, N 6. - P. 619-630. https://doi.org/10.1016/S2213-2600(20)30080-1
24. A novel macrolide/fluoroketolide, solithromycin (CEM-101), reverses corticosteroid insensitivity via phosphoinositide 3-kinase pathway inhibition / Y. Kobayashi [et al.] // Br. J. Pharmacol. - 2013. - Vol. 169, N 5. - P. 1024-1034. https://doi.org/10.1111/bph.12187
25. Популяционная перестройка B-лимфоцитов, экспрессирующих хемокиновые рецепторы, у пациентов с хронической обструктивной болезнью легких / А. Г. Кадушкин [и др.] // Биомед. химия. - 2022. - Т. 68, № 2. - C. 134-143.
26. Популяционная перестройка Т-лимфоцитов, содержащих хемокиновые рецепторы, у пациентов с хронической обструктивной болезнью легких / А. Г. Кадушкин [и др.] // Пульмонология. - 2013. - № 2. - C. 41-45.
27. The effect of aging and caloric restriction on murine CD8+ T cell chemokine receptor gene expression / R. Yung [et al.] // Immun. Ageing. - 2007. - Vol. 4. - Art. 8. https://doi.org/10.1186/1742-4933-4-8
28. T cell chemokine receptor expression in aging / R. Mo [et al.] // J. Immunol. - 2003. - Vol. 170, N 2. - P. 895-904. https://doi.org/10.4049/jimmunol.170.2.895
29. Enhanced effector function of cytotoxic cells in the induced sputum of COPD patients / R. A. Urbanowicz [et al.] // Respir. Res. - 2010. - Vol. 11, N 1. - Art. 76. https://doi.org/10.1186/1465-9921-11-76
30. CD8 chemokine receptors in chronic obstructive pulmonary disease / L. J. Smyth [et al.] // Clin. Exp. Immunol. - Vol. 154, N 1. - P. 56-63. https://doi.org/10.1111/j.1365-2249.2008.03729.x
31. Yawn, B. P. GOLD in practice: Chronic obstructive pulmonary disease treatment and management in the primary care setting / B. P. Yawn, M. L. Mintz, D. E. Doherty // Int. J. Chron. Obstruct. Pulmon. Dis. - 2021. - Vol. 16. - P. 289-299. https://doi.org/10.2147/COPD.S222664
32. Increased expression of the chemokine receptor CXCR3 and its ligand CXCL10 in peripheral airways of smokers with chronic obstructive pulmonary disease / M. Saetta [et al.] // Am. J. Respir. Crit. Care Med. - 2002. - Vol. 165, N 10. - P. 1404-1409. https://doi.org/10.1164/rccm.2107139
33. Association of increased CCL5 and CXCL7 chemokine expression with neutrophil activation in severe stable COPD / A. Di Stefano [et al.] // Thorax. - 2009. - Vol. 64, N 11. - P. 968-975. https://doi.org/10.1136/thx.2009.113647
34. Lakshmi, S. P. Emerging pharmaceutical therapies for COPD / S. P. Lakshmi, A. T. Reddy, R. C. Reddy // Int. J. Chron. Obstruct. Pulmon. Dis. - 2017. - Vol. 12. - P. 2141-2156. https://doi.org/10.2147/COPD.S121416
35. T lymphocyte insensitivity to corticosteroids in chronic obstructive pulmonary disease / M. Kaur [et al.] // Respir. Res. - 2012. - Vol. 13, N 1. - Art. 20. https://doi.org/10.1186/1465-9921-13-20
36. Hodge, G. Steroid resistant CD8+CD28null NKT-like pro-inflammatory cytotoxic cells in chronic obstructive pulmonary disease / G. Hodge, S. Hodge // Front. Immunol. - 2016. - Vol. 7. - Art. 617. https://doi.org/10.3389/fimmu.2016.00617
37. Кадушкин, А. Г. Молекулярные механизмы формирования стероидорезистентности у пациентов с хронической обструктивной болезнью легких / А. Г. Кадушкин, А. Д. Таганович // Пульмонология. - 2016. - Т. 26, № 6. - C. 736-747.
38. Azithromycin maintenance treatment in patients with frequent exacerbations of chronic obstructive pulmonary disease (COLUMBUS): a randomised, double-blind, placebo-controlled trial / S. Uzun [et al.] // Lancet Respir. Med. - 2014. - Vol. 2, N 5. - P. 361-368. https://doi.org/10.1016/S2213-2600(14)70019-0
39. Azithromycin for prevention of exacerbations of COPD / R. K. Albert [et al.] // N. Engl. J. Med. - 2011. - Vol. 365, N 8. - P. 689-698. https://doi.org/10.1056/NEJMoa1104623