Diagnostic significance of determining TREC and KREC T- and B-cell receptor rearrangement products in patients with inborn immune errors
https://doi.org/10.29235/1814-6023-2023-20-3-226-235
Abstract
Inborn immunity errors such as primary immunodeficiencies in children represent a significant problem for public health, and it is undeniably important to improve the laboratory diagnosis of this pathology by creating new, effective methods for early detection of disorders involving immune mechanisms.
The ROC analysis was used to evaluate the diagnostic significance of determining the copy number of T- and B-cell receptor DNA circle fragments (TREC/KREC) by multiplex real-time PCR in patients with a genetically determined diagnosis of primary immunodeficiency.
Peripheral blood DNA samples of healthy children (n = 98) aged 0.0 (0-15.0) years, who constituted the control group, and of patients with genetically confirmed primary immunodeficiency (n = 95) aged 7.2 (0.1-18.0) years were examined.
It has been established that determining the number of T and B cell receptor rearrangement products (TREC and KREC) has a high diagnostic significance in severe combined immunodeficiency, chromosomal instability syndromes such as ataxiateleangioectasia and Niimegen syndrome, diseases associated with immune dysregulation, agammoglobulinemia. Determining TREC and KREC is not informative in immunodeficiencies with non-lymphoid cell dysfunction or disorders that do not affect T- and B-cell receptor gene rearrangement such as the Wiskott-Aldrich syndrome and the chronic granulomatous disease.
Determining TREC, KREC has a high diagnostic significance and can be applied in diagnosis of congenital immunity errors associated with T- and B-cell lymphopenia.
About the Authors
E. A. PolyakovaBelarus
Ekaterina A. Polyakova – Researcher, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology.
43, Frunzenskaya Str., 223053, Borovliany, Minsk region
M. V. Stegantseva
Belarus
Maria V. Stegantseva – Ph. D. (Biol.), Belarusian Research Center for Pediatric Oncology, Hematology and Immunology.
43, Frunzenskaya Str., 223053, Borovliany, Minsk region
I. E. Guryanova
Belarus
Irina E. Guryanova – Ph. D. (Biol.), Head of the Laboratory, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology.
43, Frunzenskaya Str., 223053, Borovliany, Minsk region
D. V. Lutskovich
Belarus
Dmitry V. Lutskovich – Researcher, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology.
43, Frunzenskaya Str., 223053, Borovliany, Minsk region
K. Y. Skapavets
Belarus
Katsiaryna Y. Skapavets – Junior Researcher, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology.
43, Frunzenskaya Str., 223053, Borovliany, Minsk region
A. V. Liubushkin
Belarus
Aliaksandr V. Liubushkin – Junior Researcher, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology.
43, Frunzenskaya Str., 223053, Borovliany, Minsk region
T. P. Volodashchik
Belarus
Tatiana P. Volodashchik – Junior Researcher, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology.
43, Frunzenskaya Str., 223053, Borovliany, Minsk region
V. I. Kazak
Belarus
Victoria I. Kazak – Junior Researcher, Belarusian Research Center for Pediatric Oncology, Hematology and Immunology.
43, Frunzenskaya Str., 223053, Borovliany, Minsk region
Yu. V. Skibo
Russian Federation
Yulia V. Skibo – Ph. D. (Biol.), Senior Researcher, Institute of Fundamental Medicine and Biology, Kazan (Privolzhsky) Federal University.
18, Kremlevskaya Str., Kazan, Republic of Tatarstan
M. V. Belevtsev
Belarus
Mikhail V. Belevtsev – Ph. D. (Biol.), Associate Professor, Deputy Director, Republican Research Center for Pediatric Oncology, Hematology and Immunology.
43, Frunzenskaya Str., 223053, Borovliany, Minsk region
References
1. Puck J. M. Laboratory technology for population-based screening for SCID in neonates: The winner is T-cell Receptor Excision Circles (TRECs). Journal of Allergy and Clinical Immunology, vol. 129, no. 3, pp. 607–616. https://doi.org/10.1016/j.jaci.2012.01.032
2. Bains I., Thiébaut R., Yates A. J., Callard R. Quantifying thymic export: combining models of naive T cell proliferation and TCR excision circle dynamics gives an explicit measure of thymic output. Journal of Immunology, 2009, vol. 183, no. 7, pp. 4329–4336. https://doi.org/10.4049/jimmunol.0900743
3. van Zelm, M. C., Szczepański T., van der Burg M., van Dongen J. J. M. Replication history of B lymphocytes reveals homeostatic proliferation and extensive antigen-induced B cell expansion. Journal of Experimental Medicine, 2007, vol. 204, no. 3, pp. 645–655. https://doi.org/10.1084/jem.20060964
4. Tessitore M. V., Sottini A., Roccaro A. M., Ghidini C., Bernardi S., Martellosio G., Serana F., Imberti L. Detection of newly produced T and B lymphocytes by digital PCR in blood stored dry on nylon flocked swabs. Journal of Translational Medicine, 2017, vol. 15, no. 1. https://doi.org/10.1186/s12967-017-1169-9
5. Gutierrez-Mateo C., Timonen A., Vaahtera K., Jaakkola M., Hougaard D. M., Bybjerg-Grauholm J. [et al.] Development of a multiplex real-time PCR assay for the newborn screening of SCID, SMA, and XLA. International Journal of Neonatal Screening, 2019, vol. 5, no. 4. https://doi.org/10.3390/ijns5040039
6. Polyakova E. A., Stegantseva M. V., Aleshkevich S. N., Zharankova Yu. S., Minakovskaya N. V., Ostroushko D. V., Beresten’ S. A., Belevtsev M. V. Determination of excision circles of T- and B-cell receptor DNA by multiplex real-time PCR: instructions for use. Minsk, 2020. 24 p. (in Russian).
7. van Zelm M. C., Condino-Neto A., Barbouche M. R. Editorial: primary immunodeficiencies worldwide. Frontiers in Immunology, 2020, vol. 10, art. 3148. https://doi.org/10.3389/fimmu.2019.03148
8. Serana F., Chiarini M., Zanotti C., Sottini A., Bertoli D., Bosio A., Caimi L., Imberti L. Use of V(D)J recombination excision circles to identify T- and B-cell defects and to monitor the treatment in primary and acquired immunodeficiencies. Journal of Translational Medicine, 2013, vol. 11, no. 119. https://doi.org/10.1186/1479-5876-11-119
9. Kwan A., Abraham R. S., Currier R., Brower A., Andruszewski K., Abbott J. K., Baker M. Newborn screening for severe combined immunodeficiency in 11 screening programs in the United States. JAMA, 2014, vol. 312, no. 7, pp. 729–738. https://doi.org/10.1001/jama.2014.9132
10. King J., Ludvigsson J. F., Hammarström L. Newborn screening for primary immunodeficiency diseases: the past, the present and the future. International Journal of Neonatal Screening, 2017, vol. 3, no. 3, art. 19. https://doi.org/10.3390/ijns3030019
11. Loeber J. G., Platis D., Zetterström R. H., Almashanu Sh., Boemer F., Bonham J. R. [et al.] Neonatal screening in Europe revisited: an ISNS perspective on the current state and developments since 2010. International Journal of Neonatal Screening, 2021, vol. 7, no. 1, art. 15. https://doi.org/10.3390/ijns7010015
12. Puck J. M. Newborn screening for severe combined immunodeficiency and T-cell lymphopenia. Immunological Reviews, 2019, vol. 287, no. 1, pp. 241–252. https://doi.org/10.1111/imr.12729
13. King J., Borte S., Brodszki N., von Döbeln U., Edvard Smith C. I., Hammarström L. Kappa-deleting recombination excision circle levels remain low or undetectable throughout life in patients with X-linked agammaglobulinemia. Pediatric Allergy and Immunology, 2018, vol. 29, no. 4, pp. 453–456. https://doi.org/10.1111/pai.12893
14. Kraus M., Lev A., Simon A. J., Levran I., Nissenkorn A., Levi Y. B. [et al.] Disturbed B and T cell homeostasis and neogenesis in patients with ataxia teleagiectasia. Journal of Clinical Immunology, 2014, vol. 34, no. 5, pp. 561–572. https://doi.org/10.1007/s10875-014-0044-1
15. Metz C. E. Fundamental ROC Analysis. Handbook of Medical Imaging. Vol. 1. Physics and Psychophysics. Bellingham, 2000, pp. 751–769.
16. van der Spek J., Groenwold R. H. H., van der Burg M., van Montfrans J. M. TREC based newborn screening for severe combined immunodeficiency disease: A systematic review. Journal of Clinical Immunology, 2015, no. 4, no. 35, pp. 416–430. https://doi.org/10.1007/s10875-015-0152-6
17. Rechavi E., Lev A., Simon A. J., Stauber T., Daas S., Saraf-Levy T. [et al.]. First year of Israeli Newborn Screening for severe combined immunodeficiency – Clinical achievements and insights. Frontiers in Immunology, 2017, no. 8, art. 1448. https://doi.org/10.3389/fimmu.2017.01448
18. Korsunskiy I. A., Blyuss O., Gordukova M., Davydova N., Gordleeva S., Molchanov R. [et al.] TREC and KREC levels as a predictors of lymphocyte subpopulations measured by flow cytometry. Frontiers in Physiology, 2019, no. 9, art. 1877. https://doi.org/10.3389/fphys.2018.01877
19. Kraus M., Lev A., Simon A. J., Levran I., Nissenkorn A., Levi Y. B. [et al.]. Disturbed B and T cell homeostasis and neogenesis in patients with ataxia telangiectasia. Journal of Clinical Immunology, 2014, vol. 34, no. 5, pp. 561–572. https://doi.org/10.1007/s10875-014-0044-1
20. Patel J. P., Puck J. M., Srinivasan R., Brown C., Sunderam U., Kundu K., Brenner S. E., Gatti R. A., Church J. A. Nijmegen breakage syndrome detected by newborn screening for T cell receptor excision circles (TRECs). Journal of Clinical Immunology, 2015, vol. 35, no. 2, pp. 227–233. https://doi.org/10.1007/s10875-015-0136-6
21. Mandola A. B., Reid B., Sirror R., Brager R., Dent P., Chakroborty P., Bulman D. E., Roifman C. M. Ataxia telangiectasia diagnosed on newborn screening-case cohort of 5 years’ experience. Frontiers in Immunology, 2020, vol. 10, art. 2940. https://doi.org/10.3389/fimmu.2019.02940
22. Fischer A., Provot J., Jais J.-P., Alcais A., Mahlaoui N. Autoimmune and inflammatory manifestations occur frequently in patients with primary immunodeficiencies. Journal of Allergy and Clinical Immunology, 2007, vol. 140, no. 5, pp. 1388–1393.e8. https://doi.org/10.1016/j.jaci.2016.12.978
23. Tangye S. G., Al-Herz W., Bousfiha A., Chatila T., Cunningham-Rundles Ch., Etzioni A. [et al.] Human Inborn Errors of Immunity: 2019 Update on the Classification from the International Union of Immunological Societies Expert Committee. Journal of Clinical Immunology, 2020, vol. 40, no. 1, pp. 24–64. https://doi.org/10.1007/s10875-019-00737-x
24. Recher M., Burns S. O., de la Fuente M. A., Volpi S., Dahlberg C., Walter J. E. [et al.] B cell-intrinsic deficiency of the Wiskott-Aldrich syndrome protein (WASp) causes severe abnormalities of the peripheral B-cell compartment in mice. Blood, 2012, vol. 119, no. 12, pp. 2819–2828. https://doi.org/10.1182/blood-2011-09-379412
25. Bylund J., MacDonald K. L., Brown K. L., Mydel P., Collins L. V., Hancock R. E. W., Speert D. P. Enhanced inflammatory responses of chron K. L. ic granulomatous disease leukocytes involve ROS independent activation of NFkappaB. European Journal of Immunology, 2007, vol. 37, no. 4, pp. 1087–1096. https://doi.org/10.1002/eji.200636651
Review
For citations:
Polyakova E.A., Stegantseva M.V., Guryanova I.E., Lutskovich D.V., Skapavets K.Y., Liubushkin A.V., Volodashchik T.P., Kazak V.I., Skibo Yu.V., Belevtsev M.V. Diagnostic significance of determining TREC and KREC T- and B-cell receptor rearrangement products in patients with inborn immune errors. Proceedings of the National Academy of Sciences of Belarus, Medical series. 2023;20(3):226-235. (In Russ.) https://doi.org/10.29235/1814-6023-2023-20-3-226-235