COVID-19: pathogen characteristics, natural and adaptive immune response mechanisms, genetic diversity and distribution
https://doi.org/10.29235/1814-6023-2021-18-4-497-512
Abstract
COVID-19 is a pandemic disease caused by a member of the Coronaviridae family, a beta-2 coronavirus named SARS-CoV-2. The COVID-19 pandemic lasting about 19 months has caused serious damage to the health of people on our planet – by the 13 of July 2021, more than 187.9 000 000 patients have been diagnosed and more than 4.0 mln patients died from infection (> 2.0 %). Scientists around the world are actively investigating the critically important molecular-genetic aspects of the biology of the pathogen (genome RNA structure, proteins properties) that are important for understanding the disease mechanisms, as well as the mechanisms of individual and collective immunological protection and vaccines development with non-specific prophylactics.
About the Authors
L. P. TitovRussian Federation
Leonid Р. Titov ‒ Corresponding Member, D. Sc. (Med.), Professor, Head of the Laboratory
23, Filimonov Str., 220114, Minsk
M. V. Sprindzuk
Russian Federation
Matvey V. Sprindzuk ‒ Ph. D. (Eng.)
6, Surganov Str., 220012, Minsk
References
1. Zhu N., Zhang D., Wang W., Li X., Yang B., Song J. [et al.]. A novel coronavirus from patients with pneumonia in China, 2019. New England Journal of Medicine, 2020, vol. 382, no. 8, pp. 727–733. https://doi.org/10.1056/NEJMoa2001017
2. Huang C., Wang Y., Li X., Ren L., Zhao J., Hu Y. [et al.]. Clinical features of patients infected with 2019 novel coronavirus in Wuhan, China. Lancet, 2020, vol. 395, no. 10223, pp. 497–506. https://doi.org/10.1016/S0140-6736(20)30183-5
3. L’vov D. K., Al’khovskii S. V. Source of the COVID-19 pandemic: ecology and genetics of coronaviruses (Betacoronavirus: Coronaviridae) SARS-CoV, SARS-CoV-2 (subgenus Sarbecovirus), and MERS–CoV (subgenus Merbecovirus). Voprosy virusologii [Virology issues], 2020, vol. 65, no. 2, pp. 62–70 (in Russian).
4. Kharchenko E. P. The Coronavirus SARS-Cov-2: the characteristics of structural proteins, contagiousness, and possible immune collisions. Epidemiologiya i vaktsinoprofilaktika [Epidemiology and vaccinal prevention], 2020, vol. 19, no. 2, pp. 13–30 (in Russian). https://doi.org/10.31631/2073-3046-2020-20-2-13-30
5. Titov L. P. Virology: Terminological dictionary. Minsk, Minsktipproekt Publ., 2009. 445 p. (in Russian).
6. Bianchi M., Benvenuto D., Giovanetti M., Angeletti S., Ciccozzi M., Pascarella S. SARS-CoV-2 envelope and membrane proteins: structural differences linked to virus characteristics? BioMed Research International, 2020, vol. 2020, art. ID 4389089. https://doi.org/10.1155/2020/4389089
7. Agrahari R., Mohanty S., Vishwakarma K., Nayak S. K., Samantaray D., Mohapatra S. Update vision on COVID-19: structure, immune pathogenesis, treatment and safety assessment. Sensors International, 2021, vol. 2, art. 100073. https://doi. org/10.1016/j.sintl.2020.100073
8. Zhu G., Zhu C., Zhu Y., Sun F. Minireview of progress in the structural study of SARS-CoV-2 proteins. Current Research in Microbial Sciences, 2020, vol. 1, pp. 53–61. https://doi.org/10.1016/j.crmicr.2020.06.003
9. Su S., Jiang S. A suspicious role of interferon in the pathogenesis of SARS-CoV-2 by enhancing expression of ACE2. Signal Transduction and Targeted Therapy, 2020, vol. 5, no. 71, pp. 1–2. https://doi.org/10.1038/s41392-020-0185-z
10. Radzikowska U., Ding M., Tan G., Zhakparov D., Peng Y., Wawrzyniak P. [et al.]. Distribution of ACE2, CD147, CD26 and other SARS‐CoV‐2 associated molecules in tissues and immune cells in health and in asthma, COPD, obesity, hypertension, and COVID‐19 risk factors. Allergy, 2020, vol. 75, no. 11, pp. 2829–2845. https://doi.org/10.1111/all.14429
11. Titov L. P. Medical genomics: human genome organization, gene expression regulation and genetic variability. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya meditsinskikh navuk = Proceedings of the National Academy of Sciences of Belarus. Medical series, 2015, no. 4, pp. 97–113 (in Russian).
12. Kaushic C. Understanding immune responses to SARS-Cov-2. RSC COVID-19 series, 2020, no. 28, pp. 1–14.
13. V’kovski P., Kratzel A., Steiner S., Stalder H., Thiel V. Coronavirus biology and replication: implications for SARSCov-2. Nature Reviews Microbiology, 2020, vol. 19, no. 3, pp. 155–170. https://doi.org/10.1038/s41579-020-00468-6
14. Titov L. P. Genetics and virulence of viruses. Problemy bakteriologii i immunologii : materialy yubileinoi nauchnoi konferentsii k 80-letiyu kafedry mikrobiologii, virusologii, immunologii BGMU (6 fevralya 2004 goda, Minsk) [Problems of
15. bacteriology and immunology: materials of the jubilee scientific conference dedicated to the 80th anniversary of the Department of Microbiology, Virology, Immunology, BSMU (February 6, 2004, Minsk)]. Minsk, 2005, pp. 106–115 (in Russian).
16. Titov L. P., Karpov I. A. Antiviral immunity: molecular and cellular mechanisms, patterns of development and immunopathology. Meditsinskii zhurnal [Medical journal], 2007, no. 1, pp. 1–31 (in Russian).
17. Immune responses and immunity to SARS-CoV-2 (2021). Available at: https://www.ecdc.europa.eu/en/covid–19/latest–evidence/immune–responses (accessed 20.04.2021).
18. Özçürümez M. K., Ambrosch A., Frey O., Haselmann V., Holdenrieder S., Kiehntopf M. [et al.]. SARS-CoV-2 antibody testing-questions to be asked. Journal of Allergy and Clinical Immunology, 2020, vol. 146, no. 1, pp. 35–43. https://doi. org/10.1016/j.jaci.2020.05.020
19. Pashchenkov M. V., Khaitov R. M. Immune response against epidemic coronaviruses. Immunologiya [Immunology], 2020, vol. 41, no. 1, pp. 5–18 (in Russian).
20. Poh C. M., Carissimo G., Wang B., Amrun S. N., Lee C. Y.-P., Chee R. S.-L. [et al.]. Two linear epitopes on the SARSCoV-2 spike protein that elicit neutralising antibodies in COVID-19 patients. Nature Communications, 2020, vol. 11, no. 2806, pp. 1–7. https://doi.org/10.1038/s41467-020-16638-2
21. Stervbo U., Rahmann S., Roch T., Westhoff T., Babel N. SARS-CoV-2 reactive T cells in uninfected individuals are likely expanded by beta-coronaviruses. bioRxiv, 2020. 16 p. https://doi.org/10.1101/2020.07.01.182741
22. de Candia P., Prattichizzo F., Garavelli S., Matarese G. T cells: warriors of SARS-CoV-2 infection. Trends in Immunology, 2021, vol. 42, no. 1, pp. 18–30. https://doi.org/10.1016/j.it.2020.11.002
23. Guihot A., Litvinova E., Autran B., Debré P., Vieillard V. Cell-mediated immune responses to COVID-19 infection. Frontiers in Immunology, 2020, vol. 11, art. 1662. https://doi.org/10.3389/fimmu.2020.01662
24. Azkur A. K., Akdis M., Azkur D., Sokolowska M., Veen W., Brüggen M., O’Mahony L., Gao Y., Nadeau K., Akdis C. Immune response to SARS‐CoV‐2 and mechanisms of immunopathological changes in COVID‐19. Allergy, 2020, vol. 75, no. 7, pp. 1564–1581. https://doi.org/10.1111/all.1436424
25. Gutierrez L., Beckford J., Alachkar H. Deciphering the TCR repertoire to solve the COVID-19 mystery. Trends in Pharmacological Sciences, 2020, vol. 41, no. 8, pp. 518–530. https://doi.org/10.1016/j.tips.2020.06.001
26. Stringhini S., Wisniak A., Piumatti G., Azman A., Lauer S., Baysson H. [et al.]. Seroprevalence of anti- SARS-CoV-2 IgG antibodies in Geneva, Switzerland (SEROCoV-POP): a population-based study. Lancet, 2020, vol. 396, no. 10247, pp. 1–7. https://doi.org/10.1016/S0140-6736(20)31304-0
27. Pollán M., Perez-Gomez B., Pastor-Barriuso R., Oteo J., Hernán M., Pérez-Olmeda M. [et al.]. Prevalence of SARSCoV-2 in Spain (ENE–COVID): a nationwide, population-based seroepidemiological study. Lancet, 2020, vol. 396, no. 10250, pp. 1–11. https://doi.org/10.1016/S0140-6736(20)31483-5
28. Wang H., Wu X., Zhang X., Hou X., Liang T., Wang D. [et al.]. SARS-CoV-2 proteome microarray for mapping COVID-19 antibody interactions at amino acid resolution. ACS Central Science, 2020, vol. 6, no. 12, pp. 2238–2249. https:// doi.org/10.1021/acscentsci.0c00742
29. Titov L. P. Immunology: Terminological dictionary. Moscow, MIA Publ., 2008. 512 p. (in Russian).
30. Mudgal R., Nehul S., Tomar S. Prospects for mucosal vaccine: shutting the door on SARS-Cov-2. Human Vaccines & Immunotherapeutics, 2020, vol. 16, no. 12, pp. 2921–2931. https://doi.org/10.1080/21645515.2020.1805992
31. Flament H., Rouland M., Beaudoin L., Toubal A., Bertrand L., Lebourgeois S. [et al.]. Outcome of SARS-CoV-2 infection is linked to MAIT cell activation and cytotoxicity. Nature Immunology, 2021, vol. 22, no. 3, pp. 322–335. https://doi. org/10.1038/s41590- 021-00870-z
32. Onishchenko G. G., Sizikova T. E., Lebedev V. N., Borisevich S. V. Analysis of promising approaches to COVID-19 vaccine development. Biopreparaty. Profilaktika, diagnostika, lechenie [BIOpreparations. Prevention, diagnosis, treatment], 2020, vol. 20, no. 4, pp. 216–227 (in Russian).
33. COVID-19 vaccine (2021). Available at: https://en.wikipedia.org/wiki/COVID– 19_vaccine (accessed 20.04.2021).
34. Huang Q., Yan J. SARS-CoV-2 virus: vaccines in development. Fundamental Research, 2021, vol. 1, no. 2, pp. 131– 138. https://doi.org/10.1016/j.fmre.2021.01.009
35. Qu D., Zheng B., Yao X., Guan Y., Yuan Z.-H., Zhong N.-S., Lu L.-W., Xie J.-P., Wen Y.-M. Intranasal immunization with inactivated SARS-CoV (SARS-associated coronavirus) induced local and serum antibodies in mice. Vaccine, 2005, vol. 23, no. 7, pp. 924–931. https://doi.org/10.1016/j.vaccine.2004.07.031
36. Hu B., Guo H., Zhou P., Shi Z.-L. Characteristics of SARS-CoV-2 and COVID-19. Nature Reviews. Microbiology, 2021, vol. 19, no. 3, pp. 141–154. https://doi.org/10.1038/s41579-020-00459-7
37. Forster P., Forster L., Renfrew C., Forster M. Phylogenetic network analysis of SARS-CoV-2 genomes. Proceedings of the National Academy of Sciences, 2020, vol. 117, no. 17, pp. 9241–9243. https://doi.org/10.1073/pnas.2004999117
38. Yang X., Dong N., Chan E. W.-C., Chen S. Genetic cluster analysis of SARS-CoV-2 and the identification of those responsible for the major outbreaks in various countries. Emerging Microbes and Infections, 2020, vol. 9, no. 1, pp. 1287–1299. https://doi.org/10.1080/22221751.2020.1773745
39. Chen Z., Chong K. C., Wong M. C. S., Boon S. S., Huang J., Wang M. H., Ng R. W. Y., Lai C. K. C., Chan P. K. S. A global analysis of replacement of genetic variants of SARS-CoV-2 in association with containment capacity and changes in disease severity. Clinical Microbiology and Infection, 2021, vol. 27, no. 5, pp. 750–757. https://doi.org/10.1016/j.cmi.2021.01.018
40. Abduljalil J., Abduljalil B. Epidemiology, genome, and clinical features of the pandemic SARS-Cov-2: a recent view. New Microbes and New Infect, 2020, vol. 35, p. 100672. https://doi.org/10.1016/j.nmni.2020.100672
41. Rambaut A., Holmes E. C., O’Toole Á., Hill V., McCrone J. T., Ruis C., du Plessis L., Pybus O. G. A dynamic nomenclature proposal for SARS-CoV-2 lineages to assist genomic epidemiology. Nature Microbiology, 2020, vol. 5, no. 11, pp. 1403–1407. https://doi.org/10.1038/s41564-020-0770-5
42. Titov L. P., Votyakov V. I. Genomico-proteomical basis of the evolution and molecular epidemiology viruses, microorganisms and their biomacromolecules. Vestsi Natsyyanal’nai akademii navuk Belarusi. Seryya meditsinskikh navuk = Proceedings of the National Academy of Sciences of Belarus. Medical series, 2011, no. 1, pp. 109–124 (in Russian).
43. COVID-19 pandemic (2021). Available at: https://en.wikipedia.org/wiki/COVID– 19_pandemic (accessed 20.04.2021).
44. COVID-19 pandemic in Belarus (2021). Available at: https://en.wikipedia.org/wiki/COVID–19_pandemic_in_Belarus (accessed 20.04.2021)
Review
For citations:
Titov L.P., Sprindzuk M.V. COVID-19: pathogen characteristics, natural and adaptive immune response mechanisms, genetic diversity and distribution. Proceedings of the National Academy of Sciences of Belarus, Medical series. 2021;18(4):497-512. (In Russ.) https://doi.org/10.29235/1814-6023-2021-18-4-497-512