Preview

Proceedings of the National Academy of Sciences of Belarus, Medical series

Advanced search

Association of MICA and CTLA-4 gene polymorphisms with the risk of autoimmune thyroid diseases in children with type 1 diabetes

https://doi.org/10.29235/1814-6023-2025-22-4-332-343

Abstract

CTLA-4 and MICA are common candidate genes for type 1 diabetes (T1D) and autoimmune thyroid diseases (AITD). The data concerning the association of CT60 (+6230G>A) (rs3087243) polymorphism within the CTLA-4 gene and the short tandem repeats (STR) in exon 5 of the MICA gene with autoimmune endocrinopathies are distinct in different populations. This work was aimed to reveal the alleles and genotypes associated with a predisposition to AITD in children with T1D in Belarus.

We investigated the allele and genotype frequencies of CTLA-4 rs3087243 and the STR in exon 5 of MICA in children diagnosed with autoimmune polyglandular syndrome (APS) type 3a (n = 52), T1D (n = 95) and control group (n = 40).

A comparative analysis of the genotype distribution of CTLA-4 rs3087243 polymorphism showed that children with APS type 3a were significantly more likely to have the GG genotype compared with patients with T1D (OR = 5.06 (1.12–22.97)) and the control group (OR = 5.30 (1.04–27.12)). It was found that MICA-A5.1/5.1 genotype is associated with an increased risk of the combined development of T1D and AITD (OR = 3.65 (1.10‒12.05)). We revealed the association of the MICA-A9 allele with a predisposition to APS type 3a in girls with T1D (OR = 2.60 (1.17‒5.74)), especially with the most severe thyroid pathology: overt hypothyroidism (OR = 6.42 (1.70‒24.24)) and thyroid hypertrophy (OR = 7.78 (1.81‒33.38)).

The obtained data identify the GG genotype at rs3087243 (CTLA-4) as a risk factor for APS type 3a in children  with T1D; and the MICA-A9 allele – for AITD with overt hypothyroidism and goiter in girls with T1D.

About the Authors

N. V. Volkova
Belarusian State Medical University; 2nd City Children’s Clinical Hospital
Belarus

Natalya V. Volkova – Postgraduate student; pediatric endocrinologist

83, Dzerzhinski Ave., 220083, Minsk

17, Narochanskaya Str., 220020, Minsk



E. A. Aksenova
Institute of Genetics and Cytology of the National Academy of Sciences of Belarus
Belarus

Elena A. Aksenova – Ph. D. (Biol.)

27, Akademicheskaya Str., 220072, Minsk



A. V. Solntseva
Belarusian State Medical University; Republican Scientific and Practical Center for Pediatric Oncology, Hematology and Immunology
Belarus

Angelika V. Solntseva – D. Sc. (Med.), Professor, Director; Head of the Department

83, Dzerzhinski Ave., 220083, Minsk

43, Frunze Str., 223053, Borovlyany v., Minsk region



V. M. Zharich
Institute of Genetics and Cytology of the National Academy of Sciences of Belarus
Belarus

Victor M. Zharich – Researcher

27, Akademicheskaya Str., 220072, Minsk



V. V. Aleksandrovich
Institute of Genetics and Cytology of the National Academy of Sciences of Belarus
Belarus

Valeria V. Aleksandrovich – Junior Researcher

27, Akademicheskaya Str., 220072, Minsk



M. G. Siniauskaya
Institute of Genetics and Cytology of the National Academy of Sciences of Belarus
Belarus

Maryna G. Siniauskaya – Ph. D. (Biol.), Head of the Laboratory

27, Akademicheskaya Str., 220072, Minsk



References

1. Baranwal A. K., Mehra N. K. Major Histocompatibility Complex class I chain-related A (MICA) molecules: Relevance in solid organ transplantation. Frontiers in Immunology, 2017, vol. 8, art. 182. https://doi.org/10.3389/fimmu.2017.00182

2. IPD-IMGT/HLA Database. Available at: https://www.ebi.ac.uk/ipd/imgt/hla/about/statistics/ (accessed 10.02.2025).

3. Onyeaghala G., Lane J., Pankratz N., Nelson H. H, Thyagarajan B., Walcheck B., Anderson K. E., Prizment A. E. Association between MICA polymorphisms, s-MICA levels, and pancreatic cancer risk in a population-based case-control study. PLoS One, 2019, vol. 14, no. 6, p. e0217868. https://doi.org/10.1371/journal.pone.0217868

4. Frigoul A., Lefranc M.-P. MICA: Standardized IMGT allele nomenclature, polymorphisms and diseases. Recent Research Developments in Human Genetics, 2005, vol. 3, pp. 95–145.

5. Zhang J., Liao D., Yang L., Hou S. Association between functional MICA-TM and Behcet’s disease: a systematic review and meta-analysis. Scientific Reports, 2016, vol. 6, art. 21033. https://doi.org/10.1038/srep21033

6. Lee Y. H., Bae S.-C., Kim J.-H., Song G. G. Meta-analysis of the association between functional MICA-TM poly- morphisms and systemic lupus erythematosus, rheumatoid arthritis and ankylosing spondylitis. Zeitschrift für Rheumatologie, 2015, vol. 74, no. 2, pp. 146–152. https://doi.org/10.1007/s00393-014-1409-9

7. Song G. G., Kim J. H., Lee Y. H. Associations between the major histocompatibility complex class I chain-related gene A transmembrane (MICA-TM) polymorphism and susceptibility to psoriasis and psoriatic arthritis: a meta-analysis. Rheumatology International, 2014, vol. 34, no. 1, pp. 117–123. https://doi.org/10.1007/s00296-013-2849-2

8. Kumar N., Sharma G., Kaur G., Tandon N., Bhatnagar S., Mehra N. Major histocompatibility complex class I chain related gene-A microsatellite polymorphism shows secondary association with type 1 diabetes and celiac disease in North Indians. Tissue Antigens, 2012, vol. 80, no. 4, pp. 356–362. https://doi.org/10.1111/j.1399-0039.2012.01931.x

9. Englander H., Paiewonsky B., Castelo-Soccio L. Alopecia areata: a review of the genetic variants and immunode- ficiency disorders associated with alopecia areata. Skin Appendage Disorders, 2023, vol. 9, no. 5, pp. 325–332. https://doi.org/10.1159/000530432

10. Alizadeh B. Z., Eerligh P., van der Slik A. R., Shastry A., Zhernakova A., Valdigem G. [et al.]. MICA marks additional risk factors for Type 1 diabetes on extended HLA haplotypes: an association and meta-analysis. Molecular Immunology, 2007, vol. 44, no. 11, pp. 2806–2812. https://doi.org/10.1016/j.molimm.2007.01.032

11. Zake L. N., Ghaderi M., Park Y. S., Babu S., Eisenbarth G., Sanjeevi C. B. MHC class I chain-related gene alleles 5 and 5.1 are transmitted more frequently to type 1 diabetes offspring in HBDI families. Annals of the New York Academy of Sciences, 2002, vol. 958, pp. 309–311. https://doi.org/10.1111/j.1749-6632.2002.tb02993.x

12. Lee Y. J., Huang F. Y., Wang C. H., Lo F. S., Tsan K. W., Hsu C. H., Huang C. Y., Chang S. C., Chang J. G. Poly- morphism in the transmembrane region of the MICA gene and type 1 diabetes. Journal of Pediatric Endocrinology and Meta- bolism, 2000, vol. 13, no. 5, pp. 489–496. https://doi.org/10.1515/jpem.2000.13.5.489

13. Cho W. K., Jung M. H., Park S. H., Baek I. C., Choi H.-B., Kim T.-G., Suh B.-K. Association of MICA alleles with autoimmune thyroid disease in Korean children. International Journal of Endocrinology, 2012, vol. 2012, art. 235680. https:// doi.org/10.1155/2012/235680

14. Ide M., Dittmar M., Wurm M., Kanitz M., Kahaly G. J. Polymorphisms of MICA microsatellites in thyroidal autoimmunity. Medizinische Klinik (Munich), 2007, vol. 102, no. 1, pp. 11–15. https://doi.org/10.1007/s00063-007-1001-z

15. Dittmar M., Ide M., Wurm M., Kahaly G. J. Early onset of polyglandular failure is associated with HLA-DRB1*03. European Journal of Endocrinology, 2008, vol. 159, no. 1, pp. 55–60. https://doi.org/10.1530/EJE-08-0082

16. Hossen M. M., Ma Y., Yin Z., Xia Y., Du J., Huang J. Y., Huang J. J., Zou L., Ye Z., Huang Z. Current understanding of CTLA-4: from mechanism to autoimmune diseases. Frontiers in Immunology, 2023, vol. 14, art. 1198365. https://doi.org/10.3389/fimmu.2023.1198365

17. Pawlak-Adamska E., Frydecka I., Bolanowski M., Tomkiewicz A., Jonkisz A., Karabon L., Partyka A., Nowak O., Szalinski M., Daroszewski J. CD28/CTLA-4/ICOS haplotypes confers susceptibility to Graves’ disease and modulates clinical phenotype of disease. Endocrine, 2017, vol. 55, no. 1, pp. 186–199. https://doi.org/10.1007/s12020-016-1096-1

18. Daroszewski J., Pawlak E., Karabon L., Frydecka I., Jonkisz A., Slowik M., Bolanowski M. Soluble CTLA-4 receptor an immunological marker of Graves’ disease and severity of ophthalmopathy is associated with CTLA-4 Jo31 and CT60 gene. European Journal of Endocrinology, 2009, vol. 161, no. 5, pp. 787–793. https://doi.org/10.1530/EJE-09-0600

19. Aprilia A., Handono K., Sujuti H., Sabarudin A., Winaris N. sCD163, sCD28, sCD80, and sCTLA-4 as soluble marker candidates for detecting immunosenescence. Immunity and Ageing, 2024, vol. 21, no. 1, art. 9. https://doi.org/10.1186/s12979023-00405-0

20. Wang K., Zhu Q., Lu Y., Lu H., Zhang F., Wang X., Fan Y. CTLA-4 +49 G/A polymorphism confers autoimmune disease risk: an updated meta-analysis. Genetic Testing and Molecular Biomarkers, 2017, vol. 21, no. 4, pp. 222–227. https://doi.org/10.1089/gtmb.2016.0335

21. Houcken J., Degenhart C., Bender K., König J., Frommer L., Kahaly G. J. PTPN22 and CTLA-4 polymorphisms are associated with polyglandular autoimmunity. Journal of Clinical Endocrinology and Metabolism, 2018, vol. 103, no. 5, pp. 1977–1984. https://doi.org/10.1210/jc.2017-02577

22. Tu Y., Fan G., Dai Y., Zeng T., Xiao F., Chen L., Kong W. Association between rs3087243 and rs231775 polymorphism within the cytotoxic T-lymphocyte antigen 4 gene and Graves’ disease: a case/control study combined with meta-analyses. Oncotarget, 2017, vol. 8, no. 66, pp. 110614–110624. https://doi.org/10.18632/oncotarget.22702

23. Hu Y., Xu K., Jiang L., Zhang L., Shi H., Cui D. Associations between three CTLA-4 polymorphisms and Hashimoto’s thyroiditis risk: An updated meta-analysis with trial sequential analysis. Genetic Testing and Molecular Biomarkers, 2018, vol. 22, no. 4, pp. 224–236. https://doi.org/10.1089/gtmb.2017.0243

24. Kostyuchenko V. A., Pimanov S. I. Standards for thyroid gland volume in echographic examination. Novosti luchevoi diagnostiki [News of diagnostic radiology], 1998, no. 3, pp. 26‒27 (in Russian).

25. Gupta M., Nikitina-Zake L., Zarghami M., Landin-Olsson M., Kockum I., Lernmark A., Sanjeevi C. B. Association between the transmembrane region polymorphism of MHC class I chain related gene-A and type 1 diabetes mellitus in Sweden. Human Immunology, 2003, vol. 64, no. 5, pp. 553–561. https://doi.org/10.1016/s0198-8859(03)00035-1

26. Seidel E., Dassa L., Schuler C., Oiknine-Djian E., Wolf D. G., Le-Trilling V. T. K., Mandelboim O. The human cytomegalovirus protein UL147A downregulates the most prevalent MICA allele: MICA*008, to evade NK cell-mediated killing. PLOS Pathogens, 2021, vol. 17, no. 5, art. e1008807. https://doi.org/10.1371/journal.ppat.1008807

27. Cox S. T., Danby R., Hernandez D., Laza-Briviesca R., Pearson H., Madrigal J. A., Saudemont A. Functional characterisation and analysis of the soluble NKG2D ligand repertoire detected in umbilical cord blood plasma. Frontiers in Immunology, 2018, vol. 9, art. 1282. https://doi.org/10.3389/fimmu.2018.01282

28. Yoshida K., Komai K., Shiozawa K., Mashida A., Horiuchi T., Tanaka Y., Nose M., Hashiramoto A., Shiozawa S. Role of the MICA polymorphism in systemic lupus erythematosus. Arthritis and Rheumatology, 2011, vol. 63, no. 10, pp. 3058–3066. https://doi.org/10.1002/art.30501

29. Ferrari S. M., Paparo S. R., Ragusa F., Elia G., Mazzi V., Patrizio A., Ghionzoli M., Varricchi G., Centanni M., Ulisse S., Antonelli A., Fallahi P. Chemokines in thyroid autoimmunity. Best Practice and Research Clinical Endocrinology and Meta- bolism, 2023, vol. 37, no. 2, art. 101773. https://doi.org/10.1016/j.beem.2023.101773

30. Cheng C.-W., Fang W.-F., Tang K.-T., Lin J.-D. Serum interferon levels associated with the disease activity in women with overt Graves’ disease. Cytokine, 2021, vol. 138, art. 155353. https://doi.org/10.1016/j.cyto.2020.155353

31. Rashad N. M., Shabrawy R. M., Shabrawy S. M., Hassanin H. M. Expression profile of interferon-gamma (IFN-γ) mRNA as diagnostic molecular signatures of Hashimoto’s thyroiditis. Egyptian Journal of Medical Microbiology, 2021, vol. 30, no. 2, pp. 117–123.


Review

For citations:


Volkova N.V., Aksenova E.A., Solntseva A.V., Zharich V.M., Aleksandrovich V.V., Siniauskaya M.G. Association of MICA and CTLA-4 gene polymorphisms with the risk of autoimmune thyroid diseases in children with type 1 diabetes. Proceedings of the National Academy of Sciences of Belarus, Medical series. 2025;22(4):332-343. (In Russ.) https://doi.org/10.29235/1814-6023-2025-22-4-332-343

Views: 47


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-6023 (Print)
ISSN 2524-2350 (Online)