Preview

Proceedings of the National Academy of Sciences of Belarus, Medical series

Advanced search

Association of umbilical cord blood and breast milk immune composition with allergic disease manifestation

https://doi.org/10.29235/1814-6023-2025-22-3-183-194

Abstract

Some allergic diseases begin in childhood. Most cases of atopic dermatitis and food allergies develop in early childhood. The intrauterine and early postnatal periods are the most vulnerable times in terms of immune system maturation and the formation of a predisposition to diseases. The aim of the present study was to analyze the relationship between the immune profile of umbilical cord blood and breast milk with the development of allergic diseases in children. A total of 379 mother-child pairs were enrolled in the 3-year prospective cohort study. The following were measured in umbilical cord blood specimens and in breast milk samples (collected in one and three months after birth) using an ELISA test: IgE, sIgA, IL-4, IL-5, IL-6, IL-10, IL-25, TSLP, TGFβ1, TGFβ2, CCL17, CCL22, CXCL10. IgE levels in cord blood (р = 0.008) were higher and sIgA levels (р = 0.0025) in breast milk (collected within 3 months after birth) were lower in children who developed a food allergy than those in children who did not develop a food allergy. Children who developed atopic dermatitis were exposed in utero to higher cord blood concentrations of IgE (р  =  0.007) and IFN-γ (р = 0.017). In the early postnatal period they were exposed (within first month) to higher breast milk concentrations of IL-5 (р = 0.04) than healthy children. Thus, the data presented have determined a relationship between food allergy or atopic dermatitis manifestation in toddlers and intrauterine exposure via cord blood, as well as postnatal exposure via breast milk to higher concentrations of IL-5, IgE, IFN-γ and lower sIgA level. This suggests a high likelihood for immune programming.

About the Authors

N. M. Tsikhan
Grodno State Medical University, Grodno, Republic of Belarus
Belarus

Natallia M. Tsikhan – Ph. D. (Med.), Associate Professor,
Head of the Department



S. A. Lialikau
Grodno State Medical University, Grodno, Republic of Belarus
Belarus

Siarhei A. Lialikau – D. Sc. (Med.), Professor



M. V. Belevtsev
Research Center for Pediatric Oncology, Hematology and Immunology, v. Borovliany, Minsk region, Republic of Belarus
Belarus

Mikhail V. Belevtsev – Ph. D. (Biol.), Associate Professor,
Head of Research Department



A. E. Kuzniatsou
Institute of Biochemistry of Biologically Active Compounds of the National Academy of Sciences of Belarus, Grodno, Republic of Belarus
Belarus

Aleh E. Kuzniatsou – Ph. D. (Biol.), Associate Professor,
Director



U. L. Zverko
Grodno Regional Clinical Perinatal Center, Grodno, Republic of Belarus
Belarus

Uladzimir L. Zverko – Ph. D. (Med.), Associate Professor,
Head of Center



A. N. Kupchynskaya
Research Center for Pediatric Oncology, Hematology and Immunology, v. Borovliany, Minsk region, Republic of Belarus
Belarus

Aliaksandra N. Kupchynskaya – Researcher



V. S. Dubovik
Research Center for Pediatric Oncology, Hematology and Immunology, v. Borovliany, Minsk region, Republic of Belarus
Belarus

Volha S. Dubovik – Junior Researcher



A. K. Nikolskaya
City Clinical Emergency Hospital, Grodno, Republic of Belarus
Belarus

Alena K. Nikolskaya – Gynecologist, Head of the Department



References

1. Brough H. A., Lanser B. J., Sindher S. B., Teng J. M. C., Leung D. Y. M., Venter C. [et al.]. Early intervention and prevention of allergic diseases. Allergy, 2022. vol. 7, no. 2, pp. 416–441. https://doi.org/10.1111/all.15006

2. Asher M. I., Rutter C. E., Bissell K., Chiang C. Y., El Sony A., Ellwood E. [et al.]. Worldwide trends in the burden of asthma symptoms in school-aged children: Global Asthma Network Phase I cross-sectional study. Lancet, 2021, vol. 398, no. 10311, pp. 1569–1580. https://doi.org/10.1016/S0140

3. Bartha I., Almulhem N., Santos A. F. Feast for thought: A comprehensive review of food allergy 2021–2023. Journal of Allergy and Clinical Immunology, 2024, vol. 153, no. 3, pp. 576–594. https://doi.org/10.1016/j.jaci.2023.11.918

4. Luger T., Amagai M., Dreno B., Dagnelie M. A., Liao W., Kabashima K. [et al.]. Atopic dermatitis: Role of the skin barrier, environment, microbiome, and therapeutic agents. Journal of Dermatological Science, 2021, vol. 102, no. 3, pp. 142–157. https://doi.org/10.1016/j.jdermsci.2021.04.007

5. Wollenberg A., Christen-Zäch S., Taieb A., Paul C., Thyssen J. P., de Bruin-Weller M. [et al.]. ETFAD/EADV Eczema task force 2020 position paper on diagnosis and treatment of atopic dermatitis in adults and children. Journal of the European Academy of Dermatology and Venereology, 2020, vol. 34, no. 12, pp. 2717–2744. https://doi.org/10.1111/jdv.16892

6. Tran M. M., Lefebvre D. L., Dharma C., Dai D., Lou W. Y. W., Subbarao P., Becker A. B., Mandhane P. J., Turvey S. E., Sears M. R. Predicting the atopic march: results from the Canadian healthy infant longitudinal development study. Journal of Allergy and Clinical Immunology, 2018, vol. 141, no. 2, pp. 601–607.e8. https://doi.org/10.1016/j.jaci.2017.08.024

7. Prescott S. L. Early-life environmental determinants of allergic diseases and the wider pandemic of inflammatory noncommunicable diseases. Journal of Allergy and Clinical Immunology, 2013, vol. 131, no. 1, pp. 23–30. https://doi.org/10.1016/j.jaci.2012.11.019

8. Wopereis H., Oozeer R., Knipping K., Belzer C., Knol J. The first thousand days - intestinal microbiology of early life: establishing a symbiosis. Pediatric Allergy and Immunology, 2014, vol. 25, no. 5, pp. 428–438. https://doi.org/10.1111/pai.12232

9. Mohamad Zainal N. H., Mohd Nor N. H., Saat A., Clifton V. L. Childhood allergy susceptibility: The role of the immune system development in the in-utero period. Human Immunology, 2022, vol. 83, no. 5, pp. 437–446. https://doi.org/10.1016/j.humimm.2022.02.002

10. Feliu J., Clay J., Raj K., Barber L., Devlia V., Shaw B., Pagliuca A., Mufti G. Transplant-acquired food allergy (TAFA) following cord blood stem cell transplantation in two adult patients with haematological malignancies. British Journal of Haematology, 2014, vol. 167, no. 3, pp. 426–428. https://doi.org/10.1111/bjh.12992

11. Mori T., Kato J., Sakurai M., Hashimoto N., Kohashi S., Hashida R. [et al.]. New-onset food allergy following cord blood transplantation in adult patients. Bone Marrow Transplantation, 2016, vol. 51, no. 2, pp. 295–296. https://doi.org/10.1038/bmt.2015.243

12. Park J. E., Jardine L., Gottgens B., Teichmann S. A., Haniffa M. Prenatal development of human immunity. Science (New York), 2020, vol. 368, no. 6491, pp. 600–603. https://doi.org/10.1126/science.aaz9330

13. Yeh K. W., Chiu C. Y., Su K. W., Tsai M. H., Hua M. C., Liao S. L., Lai S. H., Chen L. C., Yao T. C., Huang J. L. High cord blood CCL22/CXCL10 chemokine ratios precede allergic sensitization in early childhood. Oncotarget, 2017, vol. 8, no. 5, pp. 7384–7390. https://doi.org/10.18632/oncotarget.13374

14. Rothers J., Stern D. A., Lohman I. C., Spangenberg A., Wright A. L., DeVries A., Vercelli D., Halonen M. Maternal cytokine profiles during pregnancy predict asthma in children of mothers without asthma. American Journal of Respiratory Cell and Molecular Biology, 2018, vol. 59, no. 5, pp. 592–600. https://doi.org/10.1165/rcmb.2017-0410OC

15. Zhu L., Ciaccio C. E., Casale T. B. Potential new targets for drug development in severe asthma. World Allergy Organization Journal, 2018, vol. 11, no. 1, art. 30. https://doi.org/10.1186/s40413-018-0208-1

16. Fu Y., Lou H., Wang C., Lou W., Wang Y., Zheng T., Zhang L. T cell subsets in cord blood are influenced by maternal allergy and associated with atopic dermatitis. Pediatric Allergy and Immunology, 2013, vol. 24, no. 2, pp. 178–186. https://doi.org/10.1111/pai.12050

17. Rajani P. S., Seppo A. E., Järvinen K. M. Immunologically active components in human milk and development of atopic disease, with emphasis on food allergy, in the pediatric population. Frontiers in Pediatrics, 2018, vol. 7, no. 6, art. 218. https://doi.org/10.3389/fped.2018.00218

18. Duale A., Singh P., Al Khodor S. Breast milk: A meal worth having. Frontiers in Nutrition, 2022, vol. 8, art. 800927. https://doi.org/10.3389/fnut.2021.800927

19. Akdis C. A. Does the epithelial barrier hypothesis explain the increase in allergy, autoimmunity and other chronic conditions? Nature Reviews. Immunology, 2021, vol. 21, no. 11, pp. 739–751. https://doi.org/10.1038/s41577-021-00538-7

20. Kiełbasa A., Gadzała-Kopciuch R., Buszewski B. Cytokines-biogenesis and their role in human breast milk and determination. International Journal of Molecular Sciences, vol. 22, no. 12, art. 6238. https://doi.org/10.3390/ijms22126238

21. Ramiro-Cortijo D., Herranz Carrillo G., Singh P., Rebollo-Hernanz M., Rodríguez-Rodríguez P., Ruvira S. [et al.]. Maternal and neonatal factors modulating breast milk cytokines in the first month of lactation. Antioxidants (Basel), 2023, vol. 12, no. 5, art. 996. https://doi.org/1010.3390/antiox12050996

22. Verduci E., Banderali G., Barberi S., Radaelli G., Lops A., Betti F., Riva E., Giovannini M. Epigenetic effects of human breast milk. Nutrients, 2014, vol. 6, no. 4, pp. 1711–1724. https://doi.org/10.3390/nu6041711

23. Yamaide F., Oniki N., Fikri B., Sato N., Nakano T., Shimojo N. Cord blood zonulin is associated with high-level sensitization to food allergen and food allergy development. Allergology International, 2024, vol. 73, no. 2, pp. 338–339. https://doi.org/10.1016/j.alit.2023.10.005

24. Munblit D., Treneva M., Peroni D. G., Colicino S., Chow L. Y., Dissanayeke S. [et al.]. Immune components in human milk are associated with early infant immunological health outcomes: a prospective three-country analysis. Nutrients, 2017, vol. 9, no. 6, pp. 532–538. https://doi.org/10.3390/nu9060532

25. Pannaraj P. S., Li F., Cerini C., Bender J. M., Yang S., Rollie A. [et al.]. Association between breast milk bacterial communities and establishment and development of the infant gut microbiome. JAMA Pediatrics, 2017, vol. 171, no. 7, pp. 647–654. https://doi.org/10.1001/jamapediatrics.2017.0378

26. Gay M. C. L., Koleva P. T., Slupsky C. M., Toit E. D., Eggesbo M., Johnson C. C. [et al.]. Worldwide variation in human milk metabolome: indicators of breast physiology and maternal lifestyle? Nutrients, 2018, vol. 10, no. 9, art. 1151. https://doi.org/10.3390/nu10091151

27. Santos A. F., Riggioni C., Agache I., Akdis C. A., Akdis M., Alvarez-Perea A. [et al.]. EAACI guidelines on the diagnosis of IgE-mediated food allergy. Allergy, 2023, vol. 78, no. 12, pp. 3057–3076. https://doi.org/10.1111/all.15902

28. Tikhon N. M., Lyalikov S. A., Belevtsev M. V., Zverko V. L., Kupchinskaya A. N., Dubovik O. S., Nikol’skaya A. K. Breast milk concentration of immunologically active factors in women residing in the western region of Belarus. Biokhimiya i molekulyarnaya biologiya = Biochemistry and molecular biology, 2024, vol. 3, no. 1, pp. 155–162 (in Russian).

29. Morita Y., Campos-Alberto E., Yamaide F., Nakano T., Ohnisi H., Kawamoto M. [et al.]. TGF-β concentration in breast milk is associated with the development of eczema in infants. Frontiers in Pediatrics, 2018, vol. 6, art. 162. https://doi.org/10.3389/fped.2018.00162

30. Gurram R. K., Zhu J. Orchestration between ILC2s and Th2 cells in shaping type 2 immune responses. Cellular and Molecular Immunology, 2019, vol. 16, no. 3, pp. 225–235. https://doi.org/10.1038/s41423-019-0210-8

31. Hopp R. J., Salazar P., Pasha M. A. Allergic food sensitization and disease manifestation in the fetus and infant: a perspective. Allergies, 2021, vol. 1, no. 2, pp. 115–122. https://doi.org/10.3390/allergies1020009

32. Msallam R., Balla J., Rathore A. P. S., Kared H., Malleret B., Saron W. A. A., Liu Z. [et al.]. Fetal mast cells mediate postnatal allergic responses dependent on maternal IgE. Science (New York), 2020, vol. 370, no. 6519, pp. 941–950. https://doi.org/10.1126/science.aba0864

33. Mizutani Y., Takagi N., Nagata H., Inoue S. Interferon-γ downregulates tight junction function, which is rescued by interleukin-17A. Experimental Dermatology, 2021, vol. 30, no. 12, pp. 1754–1763. https://doi.org/10.1111/exd.14425

34. Dawod B., Marshall J. S. Cytokines and soluble receptors in breast milk as enhancers of oral tolerance development. Frontiers in Immunology, 2019, vol. 10, art. 16. https://doi.org/10.3389/fimmu.2019.00016

35. Scheurer S., Junker A.-C., He C., Schülke S., Toda M. The role of IgA in the manifestation and prevention of allergic immune responses. Current Allergy and Asthma Reports, 2023, vol. 23, no. 10, pp. 589–600. https://doi.org/10.1007/s11882-023-01105-x

36. Orivuori L., Loss G., Roduit C., Dalphin J. C., Depner M., Genuneit J. [et al.]. Soluble immunoglobulin A in breast milk is inversely associated with atopic dermatitis at early age: the PASTURE cohort study. Clinical and Experimental Allergy, 2014, vol. 44, no. 1, pp. 102–112. https://doi.org/10.1111/cea.12199

37. Järvinen K. M., Westfall J. E., Seppo M. S., James A. K., Tsuang A. J., Feustel P. J., Sampson H. A., Berin C. Role of maternal elimination diets and human milk IgA in the development of cow’s milk allergy in the infants. Clinical and Experimental Allergy, 2014, vol. 44, no. 1, pp. 69–78. https://doi.org/10.1111/cea.12228


Review

For citations:


Tsikhan N.M., Lialikau S.A., Belevtsev M.V., Kuzniatsou A.E., Zverko U.L., Kupchynskaya A.N., Dubovik V.S., Nikolskaya A.K. Association of umbilical cord blood and breast milk immune composition with allergic disease manifestation. Proceedings of the National Academy of Sciences of Belarus, Medical series. 2025;22(3):183-194. (In Russ.) https://doi.org/10.29235/1814-6023-2025-22-3-183-194

Views: 28


Creative Commons License
This work is licensed under a Creative Commons Attribution 4.0 License.


ISSN 1814-6023 (Print)
ISSN 2524-2350 (Online)